PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computing anisotropic norm of linear discrete-time-invariant system via LMI-based approach

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The anisotropic norm of a linear discrete-time-invariant is a measure of system output sensitivity to stationary Gaussian input disturbances with mean anisotropy bounded by some nonnegative parameter. The mean anisotropy characterizes the predictability degree of stochastic signal. The znisotropic norm of a system is an induced norm, which limiting cases are H2- and H∞ norms as α→0 and α→∞, respectively. In [1] a method for numerical computation of the anisotropic norm was proposed. This method involves linked Riccati and Lyapunov equations and associated special type equation. This paper develops a method for computing the anisotropic norm that reduces to finding a strongly rank-minimizing solution of linear matrix inequality and a solution of special type nonlinear algebraic equation.
Rocznik
Strony
257--281
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
  • Institute of Control Sciences, RAS, Moscow, Russia, 117997, Profsoyuznaya 65,, milse@bk.ru
Bibliografia
  • [1] P. DIAMOND, I. G. VLADIMIROV, A. P. KURDYUKOV and A. V. SEMYONOV: Anisotropy-based performance analysis of linear discrete time invariant control systems. Int. J. of Control, 74 (2001), 28-42.
  • [2] I .G. VLADIMIROV, A. P. KURDYUKOV and A. V. SEMYONOV: On computing the anisotropic norm of linear discrete-time invariant systems. Proc. 13-th IFAC World Congress, San-Francisco, USA, (1996), G:IFAC-3d-01 6.
  • [3] I. VLADIMIROV, P. DIAMOND and P. KLOEDEN: Anisotropy-based robust performance analysis of finite horizon linear discrete-time-invariant systems. CADSMAP Research Report #01-01, November 2001, The University of Queensland, Australia (nttp://www.maths.uq.edu.au/~igv/).
  • [4] A. A. STOORVOGEL and A. SABERI: The discrete algebraic Riccati equation and linear matrix inequality. Linear Algebra and Its Applications, 274 (1998), 317-365.
  • [5] A. N. KOLMOGOROV: Information and algorithm theory. Nauka, Moscow, 1987, (in Russian).
  • [6] R. GRAY: Entropy and information theory. New York, Springer, 1990.
  • [7] A. V. SEMYONOV, I. G. VLADIMIROV and A.P. KURDJUKOV: Stochastic approach to H∞ optimization. Proc. 33rd Conf. Decision and Control. Florida, USA, (1994), V.3, 2249-2250.
  • [8] K. ZHOU, K. GLOVER, B. BODENHEIMER and J. DOYLE: Mixed H2 and H∞ sperformance objectives I: Robust perfomance analysis. IEEE Trans. Automat. Conn;ol. 39 (1994), 1564-1574.
  • [9] A. N. SHIRYAEV: Probability. Nauka, Moscow, 1989, (in Russian).
  • [10] I.G. VLADIMIROV, A. P. KURDYUKOV and A. V. SEMYONOV: Anisotropy of signals and entropy of linear time invariant systems. Doklady RAN, 342(3), (1995), 583-585, (in Russian).
  • [11] S. BOYD, E. FERON and V. BALAKRISHNAN: Linear matrix inequalities in system and control theory. SIAM, Philadelphia, 1994.
  • [12] B. T. POLYAK and P .S. SCHERBAKOV: Robust stability and control. Nauka, Moscow, 2002, (in Russian).
  • [13] D. PEAUCULLE, D. HENRION and Y. LABIT: User’s guide for SEDUMI INTERFACE 1.01: Solving LMI problems with SEDUMI. LAAS - CNRS, Toulouse, France, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0028-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.