PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On sliding mode based non linear PID design for position control of permanent magnet synchronous machine with unknown load torque

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a new control design procedure for permanent magnet synchronous machine motion drive in the case of unknown load torque. The contol law is based on the combination of sliding mode, non linear proportional integral derivative regulators, and the backstepping approaches. More precisely, we determine the controllers imposing the current-position tracking in three recursive steps and by using appropriate sliding mode / PID gains that are non linear functions of the system state. Moreover, a comparative study between the proposed sliding mode PID/Backstepping approach and the feedback linearizing control is made by realistic simulation including load torque change, parametric variations and measurement noise. The results of current-position tracking show the effectiveness of the proposed method in presence of strong disturbances.
Rocznik
Strony
71--86
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
autor
  • Process Control Laboratory Electrical Engineering Department Ecole Nationale polytechnique 10, ave Hassen Badi BP. 182, El-Harraech Algers Algeria, tadjine@yahoo.fr
Bibliografia
  • [1] M. KRISTIC, I. KANELLAKOPOULOUS and P. V. KOKOTOVIC: Nonlinear and adaptive control. New York, Wiley, 1995.
  • [2] P. J. N ICKLASSON, R. ORTEGA and G. ESPINOZA-PEREZ: Passivity based control of a class of Blondel-Park transformable electric machines. IEEE Trans. On Automatic Control, 42(1), (1997), 648-658.
  • [3] P. PILLAY and R. KRISHNAN: Modeling simulation and analysis of permanent magnet motor drive. Part I: The permanent magnet synchronous motor drive. IEEE Trans. on Industry Applications, 28(19), (1989), 265-273.
  • [4] M. T. Hou and C. Y. LIN: PID controller design for robust performance. IEEE Trans. on Automatic Control, 48(8), (2003), 1404-1409.
  • [5] A. DATTA, M. T. HOU and S. P. BHATTACHARYYA: Structure and synthesis of PID controllers. London, U.K., Springer-Verlag, 2000.
  • [6] K. ZHOU, J. C. DOYLE and K. GLOVER: Robust and optimal control. Upper Saddle River, NJ, Prentice-Hall, 1996.
  • [7] V. SANTIBANEZ and R. KELLY: A class of nonlinear PID global regulators for robot manipulator. Proc. IEEE Conf. on Robotics & Automation, Leuven, Belgium, (1998), 3601-3606.
  • [8] B. AMSTRONG, D. NEEVEL and T. KUSIK: New results in NPID control tracking, integral control, friction compensation and experimental results. IEEE Trans. On Control Systems Technology, 9(2), (2001), 399-406.
  • [9] A. R. BENASKEUR and A. DESBIENS: Backstepping based adaptive PID control. IEE Proc. Control Theory Application, 149(1), (2002), 54-59.
  • [10] M. BODSON and J. CHIASSON: Differential geometric methods for control of electric motors. Int. J. Robust Nonlinear Control, 8 (1998), 923-954.
  • [11] J. ZHOU and Y. WANG: Adaptive backstepping speed controller design for permanent magnet synchronous motor. IEE Proc. Electric Power Application, 149(2), (2002), 165-170.
  • [12] S. D. GENNARO: A note on the nonlinear H control for synchronous motors. Proc. IEEE Conf. Decision & Control, Sydney, Australia, (2000), 907-911.
  • [13] S. LAGHROUCHE, F. PLESTAN, A. GLUMINEAU and R. BOISLIVEAU: Robust second order sliding mode control for a permanent magnet synchronous motor. Proc. IEEE ACC, (2003), 4071-4076.
  • [14] M. A. ABIDO, M. NASIR UDDIN and M. A. RAHMAN: A new fuzzy logic controller based IPM synchronous motor drive. Proc. IEEE Electric Machines and Drives Conf., (2003), 1795-1801.
  • [15] T. L. HSEIN, M. C. TSAI and Y. Y. SUN: Robust speed control of permanent magnet synchronous motors: design and experiments. Proc. IEEE 22nd IECON Conf., (1996), 1177-1182.
  • [16] J. X. XU, Q. W. JIA and T. H. LEE: Analysis of adaptive robust backstepping control schemes for PM synchronous motors. Proc. IEEE Conf. on Decision and Control, (1996), 3516-3521.
  • [17] F. J. LIN, S. L. CHIU and K. K. SHYU: Adaptive control of PM synchronous motor drive using VSS approach. Proc. IEEE 22nd IECON Conf., (1996), 1740-1745.
  • [18] Z. KOVACIC, S. BODAN and M. PUNCEC: Adaptive fuzzy logic control based on integral criterion. Proc. IEEE Int. Symp. on Intelligent Control, (2000), 55-60.
  • [19] M. V ILATHGAMUWA, M. A. RAHMAB and K. J. TSENG: Nonlinear control of interior permanent magnet synchronous motor. Proc. IEEE Industry Applications Conf., (2000), 1115-1120.
  • [20] K. H. KIM and M. J. YOUN: A simple and robust digital current control scheme of a PMSM using time delay control approach. Proc. IEEE Industry Applications Conf., (2000), 1698-1696.
  • [21] I. ZULKIFILI and E. LEVI: A comparative analysis of fuzzy logic and PI speed control in high performance AC drives using experimental approach. IEEE Trans. on Industry Applications, 38(5), (2002), 1210-1218.
  • [22] M. TURSINI, F. PARASILITI and D. ZHANG: Real time gain tuning of PI controllers for high performance PMSM drives. IEEE Trans. on Industry Applications, 38(4), (2002), 1018-1026.
  • [23] M. E. ELBULUK, L. TONG and I. HUSSIAN: Neural network based model reference adaptive systems for high performance motor drives and motions control. IEEE Trans. on Industry Applications, 38(3), (2002), 879-886.
  • [24] K. K. SHIU and C. K. LAI: Inceremental motion control of synchronous reluctance motor via multisegment sliding mode control method. IEEE Trans. on Control systems Technology, 10(2), (2002), 169-176.
  • [25] F. J. LIN and S. L. CHID: Adaptive fuzzy sliding mode control for PM synchronous servo motor drives. IEE Proc. Control theory and Application, 145(1), (1998), 63-72.
  • [26] J. J. E. SLOTINE and W. LI: Applied Nonlinear Control. Englewood Cliffs, NJ, Prentice-Hall, 1991.
  • [27] K. H. KIM and M. J. YOUN: A nonlinear speed control of PM synchronous motor using a simple disturbance estimation technique. IEEE Trans. on Industrial Electronics, 49(3), (2002), 524-535.
  • [28] N. NASIR UDDIN , M. A. ABIDO and M. AZIZUR RAHMAN: Developpement and implementation of a hybrid intelligent controller for IPM synchronous motor drive. IEEE Trans. on Industry Application, 40(1), (2004), 68-76.
  • [29] K. I. SALEH, O. A. MOHAMMED and M. A. BADR: Field oriented vector control of synchronous motors with additional field winding. IEEE Trans. on Energy Conversion, 19(1), (2004), 95-101.
  • [30] F. J. LIN and C. H. LIN: A permanent magnet synchronous motor servo drive using self constructing fuzzy NN controller. IEEE Trans. on Energy Conversion, 19(1), (2004), 66-72.
  • [31] P. C. KRAUSE: Analysis of electric machinery. McGraw-Hill, New York, 1986.
  • [32] K. BENMANSOUR, M. S.BOUCHERIT, M. TADJINE and H. REZINE: On robust state feedback control of a permanent magnet synchronous machine drive: an experimental evaluation. Archives of Control Sciences, bf 15(1), 2005, 83-96.
  • [33] W. QIAN, S. K. PANDA and J. X. XU: Speed Ripple Minimization in PM Synchronous Motor Using Iterative Learning Control. IEEE Trans. On Energy Conversion, 20(1), 2005, 53-61
  • [34] XIE YUE, M. VILATHGAMUWA and K-J TSENG: An Observer-Based Robust Adaptive Controller for Permanent Magnet Synchronous Motor Drive With Initial Rotor Angle Uncertainty. IEEE Trans. On Energy Conversion, 20(1), 2005, 115-120.
  • [35] C. KENG LAI and K-K. SHYU: A Novel Motor Drive Design for Incremental Motion System via Sliding-Mode Control Method. IEEE Trans. On Industrial Electronics, 50(2), 2005, 499-507.
  • [36] Shinji Shinnaka: New “D-State-Observer”-Based Vector Control for Sensorless Drive of Permanent-Magnet Synchronous Motors. IEEE Trans. On Industry Applications, 41(3), 2005, 825-832.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0025-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.