PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predictive feedback approach to structural vibration suppresion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of active vibration control of a plate has been vastly researched and described in recent years. Theoretical and experimental results demonstrate the effectiveness of the designed controllers and indicate the potential of control techniques for reducing transient and steady state dynamics in structural acoustic systems. The examples from the computational studies, confirmed that vibration levels could be effectively reduced, however, the implementation procedures are not yet ideal, still exists the gap between experimental and simulations findings. To overcome this problem, autors propose extension for the Fuzzy-PID controller, with an on-line identification technique coupled with a control scheme, for a plate vibrationsupression. It is assumed, that the system to be regulated is unknown, the control schemes presented in this work have the ability to identify and suppress a plate vibrations with only an initial estimate of the system order. A prediction method implemented was designed using a neutral network (NN) identification algorithm, based on the well-known Runge-Kutta methods. This algorithm is similar to described by Wang and Lin [14], but it uses a copmutation structure of Runge-Kutta-3/8. with radial cosine basis neural network.
Rocznik
Strony
37--50
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
autor
Bibliografia
  • [1] M. BOUTAYEB: Identification of Nonlinear Systems in the Presence of Unknown but Bounded Disturbances. IEEE Trans. Autom. Control, 45(8), (2000), 1503-1507.
  • [2] J. BUTCHER: Numerical Methods for Ordinary Differential Equations. Wiley, 2003.
  • [3] A. DELI, P. LIGUORI and A. MARRONI: A Fuzzy-PI Control Strategy. Control Eng. Practice. 2(1), (194), 147-153.
  • [4] P. DEUFLHARD and A. HOHMANN: Numerical Analysis in Modern Scientific Computing. Springer-Verlag, 2003.
  • [5] D. DRIANKOV D, H. HELLENDORN and M. REINFRANK: An Introduction to Fuzzy Control, Springer-Verlag, 1993.
  • [6] C. FULLER, S. ELLIOTT and NELSON: Active Control of Vibrations. Academic Press, 1996.
  • [7] C. HANSEN and S. SNYDER: Active control of noise and vibration. E&FN Spon, London, 1997.
  • [8] L. LENIOWSKA: Vibrations of circular plate interacting with an ideal compressible fluid. Archives of Acoustics, 24(4), (1999), 435-449.
  • [9] L. LENIOWSKA and R. LENIOWSKI: Active vibration control of a circular plate with clamped boundary condition. Molecular & Quantum Acous. Jour, 22 (2001), 145-156.
  • [10] L. LENIOWSKA and R. LENIOWSKI: Active control of circular plate vibration by using piezoceramic actuators. Archives of Control Sciences, 13(4), (2003), 445-457.
  • [11] G. MAN, B. HU and R. GOSIINE: Analysis of Direct Action Fuzzy PID Controller Structures. IEEE Trans. Sys. Man and Cyb., bf 29,(3), (1999), 371-387.
  • [12] G. ROSENHOUSE: Active Noise Control. WIT Press, 2001.
  • [13] T. SODERSDROM and P. STOICA: System Identification. Prentice Hall Int., London, 1989.
  • [14] Y. WANG and C. LIN: Runge-Kutta Neural Network for Identification of Dynamical systems in High Accuracy. IEEE Trans. Neural Net. Vol. 9, No. 2, pp. 294-307, 1998.
  • [15] MATHWORKS: Manual reference of LMS based adaptive filters. 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0025-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.