PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parameterization of LMS-based control algorithms for local zones of quiet

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper summarizes the research on parameterization of LMS-based adaptive controlalgirithms for active noise control (ANC) systems. these single- and multi-channel systems were built in enclosures to create three-dimensional zones of quiet (3D ZoQs) by controlling electro-acoustic plants characterized dynamics and strong nonstationarities. On the basis of results of simulation as well as real-world experiments it was shown how the electroacoustic plant modeling errors, adaptation parameter and controller filer order choice influence the ANC system performance, also in nonstationary conditions. These observations were used to formulate some parameterization rules and hints for systems controlling electro-acoustic plants. It was shown that properly parameterized ANC systems create large adaptive, spatially moving 3D ZoQs.
Słowa kluczowe
Rocznik
Strony
53--82
Opis fizyczny
Bibliogr. 51 poz., rys.
Twórcy
Bibliografia
  • [1] C. Bao, P. Sas and H. Van Brussel: Adaptive active control of noise in 3-D reverberant enclosures. Journal of Sound and Vibration, 161(3), (1993), 501-513.
  • [2] J. C. M. Bermudez and N. J. Bershad: Non-Wiener Behaviour of the Filtered LMS Algorithm. IEEE Trans, on Circuits and Systems //, 46(8), (1999), 1110-1113.
  • [3] M. Błażej: Adaptacyjne algorytmy aktywnego tłumienia hałasu dla przestrzennych stref ciszy (Adaptive control algorithms for three-dimensional zones of quiet). MSc. Thesis, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland, 2000, (in Polish).
  • [4] M. Błażej: Neutralizacja akustycznego sprzężenia zwrotnego w układach tworzenia przestrzennych lokalnych stref ciszy (Neutralisation of acoustic feedback in active noise control systems for local zones of quiet). XIV Krajowa Konferencja Automatyki KKA 2002. (2002), 915-920, (in Polish).
  • [5] M. Błażej: Convergence Speed Equalisation for FX-LMS Algorithm Proceedings of the 7th IEEE International Conference on Methods and Models in Autamation and Robotic MMAR 2002, (2002), 1139-1144.
  • [6] M. Błażej: Układ regulacji dla przestrzennych stref ciszy (Feedback control system for 3-D Zones of Quiet). XLIX Otwarte Seminarium Akustyki OSA 2002. PTA. (2002), 263-268. (in Polish).
  • [7] M. Błażej: Application of TMS320C31 DSP in Active Noise Control. Proceedings of IFAC Workshop on Programmable Devices and Systems, Elsevier Science Ltd, (2002), 31-34.
  • [8] M. Błażej: On-line Identification for Active Noise Control. Proceedings of IFAC Workshop on Programmable Devices and Systems, Elsevier Science Ltd., (2003), 223-228.
  • [9] M. Błażej: Comparison of Different Control Structures of Active Noise Control Systems. Materiały Konferencji Metody Aktywne Redukcji Drgań i Hałasu MARDiH 2WJi. CD version. Cracow. Poland. (2003).
  • [10] M. Błażej and Z Ogonowski: Niestacjonarność przestrzennych stref ciszy (Non-stalionarity of 3D Zones of Quiet), XLVIII Otwarte Seminarium Akustyki OSA 2001. Oficyna Wydawnicza Politechniki Wrocławskiej. (2001). 197-202, (in Polish)
  • [11] C. C. Boucher, S. J. Elliott and P. A. Nelson: Effects on errors in the plant model on (he performance of algorithms for adaptive feedforward control. IEE Proceedings F - Radar and Signal Processing. 138(4), (1991), 313-319.
  • [12] G. Chen, T. Sone, N. Saito, M. Abe and S. Makino: The stability and convergence characteristics of the delayed-x LMS algorithm in ANC systems. Journal of Sound and Vibration. 216(4). (1998). 637-648.
  • [13] S. J. Elliott: Signal Processing for Active Control Academic Press. 2001.
  • [14] S. J. Elliott and P. A. Nelson: Active noise control IEEE Signal Processing Magazine. October 1993, 12-35.
  • [15] S. J. Elliott and T. J. Sutton: Performance of Feedforward and Feedback Sysiems for Active Noise Control. IEEE Trans. Speech and Audio Proceesing, 4(3). 214-223, (1996).
  • [16] Z Engel. G. Makarewicz, L. Morzvński and W. M. Zawieska: Metody aktywne redukcji hałasu. Wydawnictwo CIOP. Warsaw, Poland, 2001. (in Polish)
  • [17] L. J. Eriksson and M. C. Allie: System considerations for adaptive modeling applied to active noise control. Proceedings (of the 1998 IEEE International Symposium on Circuits and Systems ISCAS 98, (1988), 2387-2390.
  • [18] P-L. Feintuch, N. J. Bershad and A. K. Lo: A Frequency Domain Model for Filtered' LMS Algorithms - Stability Analysis Design and Elimination of the Training Mode. IEEE Trans. Signal Processing. 41(4). (1993). 1519-1531.
  • [19] J. Figwer: A new method of on-line model identification and update for multichannel active noise control systems. Archives of Control Sciences, 13(2). (2003), 141-153.
  • [20] J. Figwer and M. Błażej: A New Look on Adaptation In Active Noise Control Systems. Pomiarv, Automatyka, Kontrola. 11(3), (2003).
  • [21] J. Figwer and M. Błażej: Chaos in Active Noise Control Systems. Tenth International Congress on Sound and Vibration ICSV 200}, CD-ROM version. Stockholm, (2003).
  • [22] J. Figwer. Z. Ogonowski and M. Pawelczyk: Stanowiska laboratoryjne do badań algorytmów aktywnego tłumienia hałasu. Materiały XLIX Otwartego Seminarium Akustyki OSA 2002. Polskie Towarzystwo Akustyczne. (2002), 169-174, (in Polish)
  • [23] Y. Gong, Y. Song and S. Liu: Performance analysis of the unconstrained FXLMS algorithm for active noise control. Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 03.5 (2003), 569-571.
  • [24] S. Gudvangen and S. J. Flockton: Modelling of acoustic transfer functions for echo cancellers. IEE Proc.-Vision, Image and Signal Processing, 142< I). (1995), 47-51.
  • [25] C. Hansen and S. D. Snyder: Active Control of Noise and Vibration. Cambridge University Press, 1997.
  • [26] S. Haykin: Adaptive Filter Theory. Prentice-Hall. Englewood Cliffs. NY, 1986.
  • [27] H.-S. Kim and Y. Park; Delayed-X LMS algorithm: an efficient ANC algorithm utilizing robustness of cancellation path model. Journal of Sound and Vibration. 212(5), (1998), 875-887.
  • [28] X. Kong and S. M. Kuo: Study of Causality Constraint on Feedforward Active Noise Control Systems. IEEE Trans. Circuits and Systems IP Analog and Digital Signal Processing. 46(2). (1999), 183-186.
  • [29] S. M. Kuo and D. R. Morgan: Active Noise Control System. Algorithms and DSP Implementations. J. Wiley & Sons Inc.. New York, 1996.
  • [30] S. Laugesen and S. J. Elliott: Multichannel Active Control of Random Noise in a Small Reverberant Room IEEE Trans. Speech and Audio Processing. 1(2). (1993), 241-249.
  • [31] G. Long, F. Lingand, J. G Proakis: The LMS Algorithm with Delayed Coefficient Adaptation. IEEE Trans. Acoustics. Speech and Signal Processing. 37(9). (1989), 1397-1405.
  • [32] M. Michalczyk: Adaptacja struktury i parametrów w układach aktywnego tłumienia hałasu (Adaptation of Structure and Parameters in Active Noise Control Systems). Materiały- XIV Krajowej Konferencji Automatyki KKA 2002. (2002), 909-914. (in Polish).
  • [33] M. I. Michalczyk: Electro-Acoustic Plant Modeling for Active Noise Control Systems Proc. of the 10th IEEE International Conference on Methods and Models in Automation and Robotics MMAR 2004. (2004), 1075-1080.
  • [34] M. I. Michalczyk: Influence of Electro-Acoustic Plant Modeling Errors on Active Noise Control Svstem Performance. Proc. 10th IEEE Int. Conf on Methods and Models m Automation and Robotics MMAR 2004. (2004), 1081 -1086.
  • [35] M. I. Michalczyk: Adaptive control algorithms for three-dimensional zones of quiet. Skalmierski Computer Studio. Gliwice. 2004.
  • [36] M. I. Michalczyk: Multichannel active noise control. Proc. of IFAC Workshop on Programmable Devices and Systems PDS'2004. (2004), 366-371.
  • [37] M. Michalczyk and J Figwer: Active noise Control Using Orthogonal Filters. Proc. 7th IEEE International Conference on Methods and Models in Automation and Robotics MMAR 2004. (2001), 1033-1038.
  • [38] S. K. Mitra and J. F. Kaiser: EDITORS: Handbook of digital signal processing J. Wiley. 1993.
  • [39] M. Morari and E. Zafiriou: Robust Process Control Englewood Cliffs. NY: Prentice Hall. 1989.
  • [40] D. R. Morgan: An Analysis of Multiple Correlation Cancellation Loops with a Filler in the Auxiliary Path, IEEE Trans. Acoustics. Speech and Signal Processing. 28(4). (1980), 455-467.
  • [41] D. R. Morgan and D. A. Quinlan: Local silencing of room acoustic noise using broadband active noise control. Proceedings of the 1993 IEEE SP Workshop on Applications of Signal Processing to Audio and Acoustics, (1993).
  • [42] P. A. Nelson and S. J. Elliott: Active Control of Sound. Academic Press Ltd., 1992.
  • [43] A. Niederlińskl: Układy wielowymiarowe automatyki. Wydawnictwa Naukowo-Techniczne, Warszawa, 1974, (in Polish).
  • [44] A. Niederlińskl: Identyfikacja i adaptacja dla aktywnego tłumienia hałasu (Identification and adaptation for active noise control). Materiały XIII Krajowej Konferencji Automatyki, KKA'1999, (1999), 37-44, (in Polish).
  • [45] A. Niederliński, J. Kasprzyk and J. Figwer: MULTI-EDIP. Analizator wielowymiarowych sygnałów i obiektów (MULTI-EDIP - Multivariate Signal and System Analyser). Wydawnictwo Politechniki Śląskiej, Gliwice, Poland, 1997, (in Polish).
  • [46] B. Paillard, C. T. Le Donh, A. Berry and J. Nicolas: Accelerating the convergence of the filtered-x LMS algorithm through transform-domain optimisation. Mechanical Systems and Signal Processing, 9(4), (1995), 445-464.
  • [47] S. D. Snyder and C. H. Hansen: Design Considerations for Active Noise Control Systems Implementing the Multiple Input Multiple Output LMS Algorithm. Journal of Sound and Vibration. 159(1), (1992), 157-174.
  • [48] O. J. Tobias. J. C. M. Bermudez and N. J. Bershad: Mean Weight Behavior of the Fillered-X LMS Algorithm. IEEE Trans. Signal Processing, 48(4). (2000), 1061-1075
  • [49] B. Widrow and S. D. Stearns: Adaptive Signal Processing. Englewood Cliffs, Prentice Hall, NY, 1985.
  • [50] G. P. Williams: Chaos Theory Tamed. Joseph Henry Press, Washington D.C. 1997.
  • [51] M. Zhang, H. Lan and W. Ser: A robust online secondary path modeling method with auxiliary noise power scheduling strategy and norm constraint manipulation, IEEE Trans. Speech and Audio Processing. 11(1). (2003), 45-53.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0018-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.