PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

IMM based UKF and IMM based EKF algorithms for tracking highly maneuverable target

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims to contribute in solving the problem of model-based body motion estimation by using data coming from visual sensors. We consider the case of state estimation in jump Markov nonlinear systems. The Interacting Multiple Model (IMM) algorithm is specially designed to track accurately targets whose atate and/or measurement models changes during motion transition. However, when these models are nonlinear, the IMM algorithm must be modified in order to guarantee an accurate track. In this paper we propose to compare the results given by an IMM algorithm Extended Kalman filter based (IMM-EKF) versus those given by an IMM algorithm Unscented Kalman Filter based (IMM-UKF) in tracking target assumed to be highly maneuverable.
Rocznik
Strony
19--51
Opis fizyczny
Bibliogr. 19 poz. , rys.
Twórcy
  • Laboratoire Robotique and Productique, Ecole Militaire Polytechnique, Bp:17 Bordj El Bahri 16111 Alger, Algerie
autor
  • Laboratoire Robotique and Productique, Ecole Militaire Polytechnique, Bp:17 Bordj El Bahri 16111 Alger, Algerie
autor
  • Electrical and Computer Engineering, Ecole Nationale Polytechnique, 10 Avenue Hassen Badi, Alger
Bibliografia
  • [1] Y. Bar-Shalom and T. E. Fortman: Tracking and Data Association. Mathematics in Science and Engineering, 179 (1988).
  • [2] Y. Bar-Shalom and X. R. Li: Estimation and Tracking, Principles, Techniques and Software. Artech House, Boston, USA, 1993.
  • [3] F. Bensalah: Estimation du movement par vision active. These de I'Universite de Rennes 1, IRISA, (1996).
  • [4] B. Espiau, F. Chaumette and P. Rives: A new approach to visual servoing in robotics. IEEE Trans on Robotics and Automation 8( 3). (1992), 313-326.
  • [5] S. Hutchinson, G. D. Hager and P. I. Corke: A tutorial on visual servo control. IEEE Trans on Robotics and Automation. 12(5), (1996), 651 -670.
  • [6] P. S. Maybeck: Stochastic Models, Estimation and control. Mathematics in Science and Engineering. 141. (1979).
  • [7] K. Nickels and S. Hutchinson: Characterizing the uncertainties in point feature motion for model-based object tracking. Proc. of the IROS'97 Workshop on New Trends in Image-Based Robot Servoing. Grenoble. France, (1997), 53-63.
  • [8] W. J. Wilson, C. C. William Hulls and G. S. Bell: Relative end-effector control using Cartesian position based visual servoing. IEEE Trans on Robotics and Automation. 12(5), (1996). 684-696.
  • [9] P. Danes, M. S. Djouadi and D. Bellot: A 2-D Point-Wise Motion Estimation Scheme for Visual-Based Robotic Tasks. 7th Int. Symp. on Intelligent Robotic Systems. Coimbra. Portugal, (1999), 119-128.
  • [10] V. J. Aidala and S. E. Hammel: Utilization of modified polar coordinates for bearing-only tracking. In H.W. Sorenson. (Ed.) Kalman Filtering: Theory and Application, IEEE Press, 1985.291-302.
  • [11] H. A. P. Blom and Y. Bar-Shalom: The interacting multiple model algorithm for systems with markovian aw itching coefficients. IEEE Trans on Automatic Control, 33(8), (1988). 780-783.
  • [12] E. Mazor, A. Averbuch, Y. Bar-Shalom and J. Dayan: Interacting multiple model methods in target tracking: a survey. IEEE Trans on Aerospace and Electronic Systems, 31(2), (1995).
  • [13] E. Wen-Rong and C. Peen-Pau: A nonlinear IMM algorithm for maneuvering target tracking. IEEE Trans on Aerospace and Electronic Systems, 30(3), (1994).
  • [14] S. J. Julier and J. K. Uhlmann: Unscented filtering and nonlinear estimation. Proc. of IEEE, 92(3), (2004), 401-422.
  • [15] S. J. Julier and J. K. Uhlmann: A New Extension of the Kalman Filter to Nonlinear Systems. International Symposium on Aerospace/Defense Sensing, Simulation and Control, Orlando, USA, (1997).
  • [16] J. J. LaViola Jr: A comparaison of unscented and extended Kalman filtering for estimation quaternion motion. Proc. of the American Control Conference, 3 (2003), 2435-2440.
  • [17] P. Tissainayagam and D. Suter: Visual Tracking and Motion Determination using the IMM Algorithm. I4th Int. Conf on Pattern recognition, 1, Brishane, Australia, (1998), 16-20.
  • [18] P. Tissainayagam and D. Suter: Motion Model Selection for Visual Feature Tracking. Tech. Report. MECS-1997-4, Monash University, Australia.
  • [19] B. W. Miners: Kalman Filtring and Prediction for Hand Tracking. Advenced Digital Signal Processing Course Projet - University of Guelph, Canada 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0018-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.