Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper proposes an approach to derive fuzzy granules from numerical data. Granules are first formed by means of a double-clustering technique, and then properly fuzzyfied so as to obtain interpretable granules, in the sense that they can be described by linquistic labels. The double-clustering technique involves two steps. First, information granules are induced in the space of numerical data via the FCM algorithm. In the second step, the prototypes obtained in the first step are further clustered along each dimension via a hierarchical clustering, in order to obtain one-dimensional granules that are afterwards quantified as fuzzy sets. The derived fuzzy sets can be used as building blocks of fuzzy rule-based model. The approach is illustrated with the aid of a benchmark classification example that provides insight into the interpretability of the induced granules and their effect on the results of classification.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
397--410
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
- Computer Science Department, University of Bari Bari, Italy
autor
- Computer Science Department, University of Bari Bari, Italy
autor
- Computer Science Department, University of Bari Bari, Italy
Bibliografia
- [1] W. Gawronski: Balanced Control of Flexible Structures. Lecture Notes in Control and Information Sciences, 211, Springer-Verlag, (1996).
- [2] A. Ilchmann: Non-Identifier-Based High-Gain Adaptive Control. Lecture Notes in Control and Information Sciences, 189, Springer-Verlag, (1993).
- [3] S.M. Joshi: Control of Large Flexible Space Structures. Lecture Notes in Control and Information Sciences, 131, Springer-Verlag, (1989).
- [4] T. Kaczorek: Linear Control Systems Vol.1. Research Studies Press Ltd., 1992.
- [5] T. Kato: Pertubation Theory for Linear Operators. Springer-Verlag, 1976.
- [6] J. La Salle and S. Lefschetz: Stability by Liapunov’s Direct Method with Applications. Academic Press, 1961.
- [7] Z. Lin: Low Gain Feedback. Lecture Notes in Control and Information Sciences, 240, Springer-Verlag, (1999).
- [8] H. Logemann and S. Townley: Discrete-time low-gain control of uncertain infinite-dimensional systems. IEEE Trans. on Automatic Control, 42 (1997), 22-37.
- [9] H. Logemann and S. Townley: Adaptive control of infinite-dimensional systems without parameter estimation: an overview. IMA J. Mathematical Control and Information, 14 (1997), 175-206.
- [10] H. Logemann and S. Townley: Low-gain control of uncertain regular linear systems. SIAM J. Cont. Opt., 35 (1997), 78-116.
- [11] D.E. Miller and E.J. Davison: The self-tuning robust servomechanism problem. IEEE Trans. on Automatic Control, 34 (1989), 511-523.
- [12] P.K. Sinha: Multivariable Control. Marcel Dekker Inc., 1984.
- [13] T. Williams: Transmission-zero bounds for large space structures, with applications. J. Guidance, Control, and Dynamics, 12 (1989), 33-38.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0003-0004