PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

An Algorithm of granulation on numeric attributes for association rules mining

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mining association rules from numeric data is relatively more difficult than categorical data. The main reason is that the domain of real number lacks of the user's abstraction on reality. In this paper, we propose an algorithm to granualte numeric intervals automatically. The proposed method defines two threshold factors, information density-similarity and information closeness, to measure the condition if two granules should be merged and construct an abstraction hierarchy of intervals. For abstracting the best level of interval from the interval hierarchy automatically, we develop a determination function based on the threshold factors. After the intervals are determined, the fuzzy membership functions for each interval can be generated.Then an algorithm for mining fuzzy association rules can be used mine qualified association rules from the fuzzy intervals.
Rocznik
Strony
379--395
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Institute of Information Engineering I-Shou University 1, Section 1, Hsueh-Cheng Rd., Ta-Hsu Hsiang, Kaohsiung County, Taiwan, 840
autor
  • Institute of Information Engineering I-Shou University 1, Section 1, Hsueh-Cheng Rd., Ta-Hsu Hsiang, Kaohsiung County, Taiwan, 840
autor
  • Institute of Information Engineering I-Shou University 1, Section 1, Hsueh-Cheng Rd., Ta-Hsu Hsiang, Kaohsiung County, Taiwan, 840
autor
  • Department of Electrical Engineering National University of Kaohsiung No. 251, Lane 280, Der-Chung Road, Nan-Tzu District Kaohsiung 811, Taiwan
Bibliografia
  • [1] R. Agrawal, T. Imielinski and A. Swami: Mining Association Rules between Sets of Items in Large Databases. Proc. ACM SIGMOD Int. Conf. on Management of Data, Washington, (1993), 207-216.
  • [2] W.H. Au and K.C.C. Chan: An Effective Algorithm for Discovering Fuzzy Rules in Relational Databases. Proc. IEEE Int. Conf. on Fuzzy Systems, (1998), 1314-1319.
  • [3] K.C.C. Chan and W.H. Au: Mining Fuzzy Association Rules. Proc. 6th ACM Int. Conf. on Information and Knowledge Management, Las Vegas, (1997), 209-215.
  • [4] C.H. Cheng, A.W. Fu and Y. Zhang: Entropy-based Subspace Clustering for Mining Numerical Data. Proc. Int. Conf. on Knowledge Discovery and Data Mining, San Diego, USA, (1999), 84-93.
  • [5] B.C. Chien, Z.L. Lin and T.P. Hong: An Efficient Clustering Algorithm for Mining Fuzzy Quantitative Association Rules. Proc. Int. Conf. IFSA, (2001), 1306-1311.
  • [6] M. Ester, H. Kriegel, J. Sander and X. Xu: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proc. 2nd Int. Conf. on Knowledge Discovery in Databases, Menlo Park, USA, (1996), 226-231.
  • [7] S. Guha, R. Rastogi and K. Shim: CURE: An Efficient Clustering Algorithm for Large Databases. Proc. ACM SIGMOD Int. Conf. on Management of Data, Seattle, USA, (1998), 73-84.
  • [8] K. Hirota and W. Pedrycz: Linguistic Data Mining and Fuzzy Modeling. IEEE Int. Conf. on Fuzzy Systems, 2 (1996), 1488-1496.
  • [9] K. Hirota and W. Pedrycz: Fuzzy Computing for Data Mining. Proc. IEEE, 87(9), (1999), 1575-1600.
  • [10] T.P. Hong, C.S. Kuo and S.C. Chi: A Data Mining Algorithm for Transaction Data with Quantitative Values. Intelligent Data Analysis, 3(5), (1999), 363-376.
  • [11] G. Karypis, E.H. Han and V.Kumar, Chameleon: Hierarchical Clustering Using Dynamic Modeling. IEEE Computer, 32(8), (1999), 68-75.
  • [12] L.H. Lee and L.K. Hyung: An Extension of Association Rules Using Fuzzy Sets. Proc. Int. Conf. IFSA, (1997), 399-402.
  • [13] B. Lent, A. Swami and J. Widom: Clustering Association Rules. Proc. IEEE Int. Conf. on Data Engineering, (1997), 220-231.
  • [14] R.J. Miller and Y. Yang: Association Rules over Interval Data. Proc. ACM SIGMOD Int. Conf. on Management of Data, AZ, USA, (1997), 452-461.
  • [15] W. Pedrycz: Fuzzy Set Technology in Knowledge Discovery. Fuzzy Sets and Systems, (1998), 279-290.
  • [16] W. Pedrycz: Granular Computing: An Introduction. Proc. Int. Conf. IFSA, (2001), 1349-1354.
  • [17] A. Bargiela and W. Pedrycz: Classification and Clustering of Granular Data. Proc. Int. Conf. IFSA, (2001), 1696-1701.
  • [18] J.R. Quinlan: Introduction of decision trees. Machine Learning, 1 (1986), 81-106.
  • [19] R. Srikant and R. Agrawal: Mining Quantitative Association Rules in Large Relational Tables. Proc. ACM SIGMOD Int. Conf. on Management of Data, Montreal, Canada, (1996), 1-12.
  • [20] W. Wang, J. Yang and R. Munts: STING: A Statistical Information Grid Approach to Spatial Data Mining. Proc. 23rd Conf. on Very Large Data Bases, Athens, Greece, (1997), 186-195.
  • [21] X. Xu, M. Ester, H.P. Kriegel and J. Sander: A Distribution-Based Clustering Algorithm for Mining in Large Spatial Databases. Proc. IEEE Int. Conf. On Data Engineering, (1998), 324-331.
  • [22] R.R. Yager: Fuzzy Summaries in Database Mining. Proc. 11th Conf. on Artificial Intelligence for Application, Los Angeles, USA, (1995), 265-269.
  • [23] T. Zhang, R. Ramakrishnan and M. Livny: BIRCH: An Efficient Data Clustering Method for Very Large Databases. Proc. ACM SIGMOD Int. Conf. on Management of Data, Montreal, Canada, (1996), 103-114.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0003-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.