Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper introduces a new classifier design method, that is based on an extension of the classical Ho-Kashyap procedure. The proposed method uses absolute error rather than square errorto design a linear classifier. Additionally, easy control of generalization ability and outliers robustness is obtained. Finally, examples are giver to demonstrate the validity of the introduced method.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
289--299
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Institute of Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
Bibliografia
- [1] I. Barrondale and F.D.K. Roberts: An Improved Algorithm for Discrete L1 Linear Approximation. SIAM J. Numer. Anal., 10(5), (1973), 839-848.
- [2] I. Barrondale and A. Young: Algorithms for Best L1 and L… Linear Approximations on a Discrete Set. Numerische Mathematik, 8 (1966), 295-306.
- [3] G. Cauwenberghs and T. Poggio: Incremental and Decremental Support Vector Machine Learning. Adv. Neural Information Processing Systems, Cambridge MA, MIT Press, 13 (2001).
- [4] R. Detrano, A. Janosi, W. Steinbrunn, M. Pfisterer, J. Schmid, S. Sandhu, K. Guppy, S. Lee and V. Froelicher: International application of a new probability algorithm for the diagnosis of coronary artery disease. American Journal of Cardiology, 64 (1989), 304-310.
- [5] R.O. Duda and P.E. Hart: Pattern Classification and Scene Analysis, John Wiley&Sons, New York, 1973.
- [6] P.J. Green: Iteratively Reweighted Least Squares for Maximum Likelihood Estimation, and Some Robust and Resistant Alternatives. J. Roy. Statist. Soc., B(46), (1984), 149-192.
- [7] R. Herbrich, T. Graepel and C. Campbell: Bayes Point Machines. Journal of Machine Learning Research, 1 (2001), 245-279.
- [8] Y.-C. Ho and R.L. Kashyap: An algorithm for linear inequalities and its applications. IEEE Trans. Elec. Comp., 14 (1965), 683-688.
- [9] Y.-C. Ho and R.L. Kashyap: A class of iterative procedures for linear inequalities. J.SIAM Control, 4 (1966), 112-115.
- [10] P.J. Huber: Robust Statistics. Wiley, New York, 1981.
- [11] M.I. Jordan and R.A. Jacobs: Hierarchical mixture of experts and the EM algorithm. Neural Computations, 6(2), (1994), 181-214.
- [12] P. McCullagh and J.A. Nelder: Generalized linear models. Chapman and Hall, London, 1983.
- [13] R.M. Palhares and P.L.D. Peres: Robust Filtering with Guaranteed Energyto-peak Performance - an LMI approach. Automatica, 36 (2000), 851-858.
- [14] B.D. Ripley: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge, 1996.
- [15] J.T. Tou and R.C. Gonzalez: Pattern Recognition Principles. Adison-Wesley, London, 1974.
- [16] J.G. Vanantwerp And R.D. Braatz: A Tutorial on Linear and Bilinear Matrix Inequalities. J. Proc. Cont., 10 (2000), 363-385.
- [17] V. Vapnik: An Overview of Statistical Learning Theory. IEEE Trans. Neural Networks, 10(5), (1999), 988-999.
- [18] V. Vapnik: Statistical Learning Theory. Wiley, New York, 1998.
- [19] A. Webb: Statistical Pattern Recognition. Arnold, London, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0002-0059