PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Feed-forward torques and reference trajectory for an arm with flexible joints

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We propose a design method of the feed-forward torques and the reference trajectory for an arm with flexible joints and unknown stiffiness coefficients. The bounds on the control torque are included explicitly. The designed commanded feed-forward torques and the corresponding reference trajectory are close to be time-optimal. The control law for each drive torque is composed with the commanded feed-forward torque and linear angular position and velocity feedback. The torques and the trajectory are used as input signals of PD-controllers. In a case of one-link flexible arm it is proved that so-called 'fluent' control torque enables to reach the desired motion with a small error and without large vibrations in the flexible joint. Designed fluent commanded feed-forward torque is successfully implemented in numerical experiments. The stiffness coefficient is assumed to be unknown so the mathematical model of the flexible arm is not known exactly. In two-link flexible arm the stiffness coefficients are also assumed unknown. Due to discontinuities of the optimal control functions and not acceptable jumps in the optimal control torques a 'trapezoidal' fluent control technique is proposed. Numerical experiments show that the designed control is close to time-opitimal. The approach presented in the paper can be extended to systems with more links and can take the gravity into consideration. however, in this case a time-optimal or a quasi-time-optimal control for the associated rigid system have to be designed.
Rocznik
Strony
125--149
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • Institut de Recherche en Communications et Cybernetique de Nantes U.M.R., France
  • Institut de Recherche en Communications et Cybernetique de Nantes U.M.R., France
Bibliografia
  • [1] A. Ailon and R. Ortega: An Observer-Based Set Point Controller for Robot Manipulators with Flexible Joints. Systems & Control Letters, 21(4), (1993), 329-335.
  • [2] L. D. Akulenko: Quasi-Stationary Finite Motion Control of Hybrid Oscillatory Systems. Applied Mathematics and Mechanics, 55(2), (1991), 183-192.
  • [3] Y. Aoustin: Robust Control for Flexible Joint Robots: A Single Link Case Study with Unknown Joint Stiffness Parameters. Proc. 24th IEEE Conf. on Systems, Man and Cybernetics, 4, (1993), 45-50.
  • [4] Y. Aoustin, and A.M. Formal’sky: On the Synthesis of a Nominal Trajectory for Control Law of a One-link Flexible Arm. Int. J. of Robotics Research, 16(1), (1997), 36-46.
  • [5] Y. Aoustin, and A.M. Formal’sky: On the Feed-forward Torques and Reference Trajectory for Flexible Two-Link Arm. Multibody System Dynamics, Kluwer Academic Publishers, 3(3), (1999), 241-265.
  • [6] H. Bremer: Dynamical Aspect in Flexible Rotating Machinery. J. of Sound and Vibration, 152(1), (1992), 39-55.
  • [7] B. Brogliato, R. Ortega and R. Lozano: Global Tracking Contyrollers for Flexible-Joint Manipulators: A Comparative Study. Automatica, 31(4), (1995), 941-956.
  • [8] M.A. Brown, and A.A. Shabana: Application of Multibody Methodology to Rotating Shaft. J. of Sound and Vibration, 204(3), (1997) 439-457.
  • [9] F. Chernous’ko, N. Bolotnik and V. Gradetsky: Manipulation Robots Dynamics, Control and Optimization. CRC Press, Boca Raton, 1994.
  • [10] A. De Luca, A. Isidori and F. Nicolo: Control of Robot Arm with Elastic Joints via Nonlinear Dynamic Feedback. Proc. 24th IEEE Conf. On Decision and Control, Ft. Lauderdale, New-York, (1985), 1671-1679.
  • [11] A. De Luca and B. Siciliano: Closed-Form Dynamic Model of Planar Multi-Link Lightweight Robots. IEEE Trans. on Systems, Man and Cybernetics, 21(4), (1991), 826-839.
  • [12] A. De Luca and P. Lucibello: A General Algorithm for Dynamic Feedback Linearization of Robots with Elastic Joints’ Manipulators. Proc. IEEE Int. Conf. on Robotics and Automation, (1998), 504-510.
  • [13] A. De Luca: Feedforward/Feedback Laws for Control of Flexible Robots. Proc. IEEE Int. Conf. on Robotics and Automation, (2000), 233-240.
  • [14] W.E. Dixon, E. Zergeroglu, M.S. De Queiroz and D.M. Dawson: Global Output Feedback Tracking Control for Rigid-Link Flexible-Joint Robots Manipulators. Proc. IEEE Int. Conf. on Robotics and Automation, (1998), 498-503.
  • [15] E. Dombre and W. Khalil: Modélisation Identification et Commande des Robots. Hermes, Paris, 1999.
  • [16] A.M. Formal’sky: On the Time-Optimal Control of the Bending of a Plane Two-Link Mechanism Rotation. Applied Mathematics and Mechanics, 60(2), (1996), 243-251.
  • [17] A. Formal’sky and E.K. Lavrosky: Stabilization of Flexible One-link Arm Position: Stability Domains in the Space of Feedback Gains. Int. J. of Robotics Research, 15(5), (1996), 492-504.
  • [18] H.P. Geering, L. Guzella, S. Hepner and C.H. Onder: Time-Optimal Motions of Robots in Assembly Tasks. IEEE Trans. on Automatic Control, AC-31(6), (1986), 512-518.
  • [19] R. Kelly, R. Ortega A. Ailon and A. Loria: Global Regulation of Flexible Joint Robots Using Approximate Differentiation. IEEE Trans. on Automatic Control, 39(6), (1994), 1222-1224.
  • [20] W. Khalil and M. Gautier: Modeling of Mechanical Systems with Lumped Elasticity. Proc. IEEE Int. Conf. on Robotics and Automation, (2000), 3965-3970.
  • [21] H. Krishnan: Design of Force/Position Control Laws for Constrained Robots, Including Effects of Joint Flexibility and Actuators Dynamics. Robotica, 17(1), (1999), 41-48.
  • [22] I.D. Landau: La Robustesse. Hermes (Ecole d’été d’automatique de Grenoble), Paris, (1994), 288-357.
  • [23] R. Lozano and B. Brogliato: Adaptive Control of Robot Manipulators with Flexible Joints. IEEE Trans. on Automatic Control, AC-37(10), (1992), 1501-1505.
  • [24] C.J.B. Macnab and G.M.T. d’Eleuterio: Stable, On-line Learning Using CMACs for Neuroadaptive Tracking Control of Flexible-Joint Manipulators. Proc. IEEE Int. Conf. on Robotics and Automation, (1998), 511-517.
  • [25] F. Pfeiffer H. Bremer and J. Figueiredo: Surface Polishing with Flexible link Manipulators. Eur. J. of Mechanics Applied Solids, 15(1), (1996), 137-153.
  • [26] L.S. Pontryagin V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mischenko: The Mathematical Theory of Optimal Processes. Wiley (-Interscience), New-York, 1962.
  • [27] J.X. Shi, A. Albu-Shäffer and G. Hirzinger: Key Issues in the Dynamic Control of Lightweight Robots for Space and Terrestrial Applications. Proc. IEEE Int. Conf. on Robotics and Automation, (1998), 490-497.
  • [28] M.W. Spong: Modeling and Control of Elastic Joint Robots. Trans. ASME, 109(4), (1987), 310-319.
  • [29] M.W. Spong, K. Khorosani and P.V. Kokotovic; An Integral Manifold Approach to the Feedback Control of Flexible Joint Robots. IEEE Trans. Robotics Automation, 3(4), (1987), 291-299.
  • [30] P. Tomei: A simple PD Controller for Robots with Elastic Joints. IEEE Trans. On Automatic Control, 36(10), (1991), 1208-1213.
  • [31] M.I. Zelikin and V.F. Borisov: Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering. Birkhäuser, Boston, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0002-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.