PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Separation of isochromatics and isoclinics phasemaps for the photoelastic technique with use phase shifting and a large number of high precision images

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Digital photoelasticity is an important optical metrology follow-up for stress and strain analysis using full-field digital photographic images. Advances in digital image processing, data acquisition, procedures for pattern recognition and storage capacity enable the use of the computer-aided technique in automation and facilitate improvement of the digital photoelastic technique. The objective of this research is to find new equations for a novel phase-shifting method in digital photoelasticity. Some innovations are proposed. In terms of phaseshifting, only the analyzer is rotated, and the other equations are deduced by applying a new numerical technique instead of the usual algebraic techniques. This approach can be used to calculate a larger sequence of images. Each image represents a pattern and a measurement of the stresses present in the object. A decrease in the mean errors was obtained by increasing the number of observations. A reduction in the difference between the theoretical and experimental values of stresses was obtained by increasing the number of images in the equations for calculating phase. Every photographic image has errors and random noise, but the uncertainties due to these effects can be reduced with a larger number of observations. The proposed method with many images and high accuracy is a good alternative to the photoelastic techniques.
Rocznik
Strony
127--138
Opis fizyczny
Bibliogr. 26 poz., rys., wykr., wzory
Twórcy
autor
  • Centro Universitário Newton Paiva, Coordenaçoes das Engenharias, Rua José Cláudio Rezende, 420 - Estoril, CEP 30455-590, Belo Horizonte, M.G., Brasil, crisamagalhaes@hotmail.com
Bibliografia
  • [1] Asundi, A.K. (2002). MATLAB for Photomechanics - A Primer. Elsevier Science.
  • [2] Asundi, A.K., Tong, T., Boay, C.G. (2000). Determination of isoclinic and isochromatic parameters using the three-load method. Meas. Sci. Technol., 11, 532, DOI:10.1088/0957-0233/11/5/313.
  • [3] Ramesh, K. (2000). Digital Photoelasticity. Meas. Sci. Technol., 11, 1826, DOI:10.1088/0957-0233/11/12/704.
  • [4] Konwerska-Hrabowska, J. (1999). Optical pressure sensors using the spectral photoelastic effect. Metrologia, 36, 591, DOI:10.1088/0026-1394/36/6/21.
  • [5] Yoneyama, S, Kamihoriuchi, H. (2009). A method for evaluating full-field stress components from a single image in interferometric photoelasticity. Meas. Sci. Technol., 20, 075302, DOI:10.1088/0957-0233/20/7/075302.
  • [6] Chernozatonski, L.A., Gramotnev, D.K., Vakulenko, A.V. (1990). Geometrical mechanism of photoelastic interaction in superlattices. Physics Letters A, 144(2), 105-110.
  • [7] Baek, T.H., Kim, M.S., Morimoto, Y., Fujigaki, M. (2002). Separation of isochromatics and isoclinics from photoelastic fringes in a circular disk by phase measuring technique. KSME International Journal, 16(2), 175-181.
  • [8] Collett, E. (2005). Field Guide to Polarization. SPIE Publications, FG05.
  • [9] Ng, T.W. (1997). Derivation of retardation phase in computer-aided photoelasticity by using carrier fringe phase shifting. Appl. Opt., 36, 8259-8263.
  • [10] Oh, J.T., Kim, S.W. (2003). Polarization-sensitive optical coherence tomography for photoelasticity testing of glass/epoxy composites. Opt. Express, 11, 1669-1676.
  • [11] Magalhaes Jr, P.A.A., Neto, P.S., Magalhães, C.A. (2010). New Carré Equation. Metrol. Meas. Syst., 17(2), 173-194.
  • [12] Toto-Arellano, N.I., Rodriguez-Zurita, G., Meneses-Fabian, C., Vazquez-Castillo, J.F. (2008). Phase shifts in the Fourier spectra of phase gratings and phase grids: an application for one-shot phase-shifting interferometry. Opt. Express, 16, 19330-19341.
  • [13] Estrada, J.C., Servin, M., Quiroga, J.A. (2011). Noise robust linear dynamic system for phase unwrapping and smoothing. Opt. Express, 19, 5126-5133.
  • [14] Navarro, M.A., Estrada, J.C., Servin, M., Quiroga, J.A., Vargas, J. (2012). Fast two-dimensional simultaneous phase unwrapping and low-pass filtering.Opt. Express, 20, 2556-2561.
  • [15] Ramji, M., Ramesh, K. (2008). Whole field evaluation of stress components in digital photoelasticity - issues, implementation and application. Opt. Lasers. Eng., 46(3), 257-71.
  • [16] Ramji, M., Ramesh, K. (2008). Stress separation in digital photoelasticity, Part A - photoelastic data unwrapping and smoothing. J Aerosp. Sci. Technol., 60(1), 5-15.
  • [17] Ramji, M., Ramesh, K. (2008). Stress separation in digital photoelasticity, Part B - whole field evaluation of stress components. J Aerosp. Sci. Technol., 60(1), 16-25.
  • [18] Pinit, P., Umezaki, E. (2007). Digitally whole-field analysis of isoclinic parameter in photoelasticity by four-step color phase shifting technique. Optics and Laser in Engineering, 45, 795-807.
  • [19] Ashokan, K., Ramesh, K. (2009). Finite element simulation of isoclinic and isochromatic phasemaps for use in digital photoelasticity. Experimental Techniques, 33, 38-44.
  • [20] Ramesh, K. (2000). Digital photoelasticity: advanced techniques and applications. Springer-Verlag, Berlin, Germany.
  • [21] Patterson, E.A., Wang, Z.F. (1991). Towards full field automated photoelastic analysis of complex components. Strain, 27(2), 49-5.
  • [22] Ramji, M., Prasath, R.G.R. (2011). Sensitivity of isoclinic data using various phase shifting techniques in digital photoelasticity towards generalized error sources. Optics and Lasers in Engineering, 49(9-10), 1153-1167.
  • [23] Chang, S.H., Wu, H.H.P. (2011). Improvement of digital photoelasticity based on camera response function. Appl. Opt., 50, 5263-5270.
  • [24] Ajovalasit, A., Petrucci, G., Scafidi, M. (2012). RGB photoelasticity applied to the analysis of membrane residual stress in glass. Meas. Sci. Technol., 23, 025601, DOI:10.1088/0957-0233/23/2/025601.
  • [25] Buckberry, C., Towers, D. (1995). Automatic analysis of isochromatic and isoclinic fringes in photoelasticity using phase measuring techniques. Meas. Sci. Technol., 6, 1227, DOI:10.1088/0957-0233/6/9/001.
  • [26] Quiroga, J.A., González-Cano, A. (2000). Automatic determination of isostatics in two-dimensional photoelasticity. Meas. Sci. Technol., 11, 259 DOI:10.1088/0957-0233/11/3/313.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0113-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.