PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unconditional security by the laws of classical physics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is an ongoing debate about the fundamental security of existing quantum key exchange schemes. This debate indicates not only that there is a problem with security but also that the meanings of perfect, imperfect, conditional and unconditional (information theoretic) security in physically secure key exchange schemes are often misunderstood. It has been shown recently that the use of two pairs of resistors with enhanced Johnsonnoise and a Kirchhoff-loop - i.e., a Kirchhoff-Law-Johnson-Noise (KLJN) protocol . for secure key distribution leads to information theoretic security levels superior to those of today's quantum key distribution. This issue is becoming particularly timely because of the recent full cracks of practical quantum communicators, as shown in numerous peer-reviewed publications. The KLJN system is briefly surveyed here with discussions about the essential questions such as (i) perfect and imperfect security characteristics of the key distribution, and (ii) how these two types of securities can be unconditional (or information theoretical).
Rocznik
Strony
3--16
Opis fizyczny
Bibliogr. 59 poz., rys., tab., wzory
Twórcy
autor
autor
autor
autor
autor
autor
autor
  • University of Szeged, Department of Technical Informatics, Árpád tér 2, Szeged, H-6701, Hungary, mingesz@inf.u-szeged.hu
Bibliografia
  • [1] Yuen. H.P. (2012). On the foundations of Quantum key distribution - Reply to Renner and beyond. arXiv:1210.2804.
  • [2] Hirota.O (2012). Incompleteness and limit of quantum key distribution theory. arXiv:1208.2106v2.
  • [3] Renner. R. (2012). Reply to recent scepticism about the foundations of quantum cryptography. arXiv: 12095423v. 1.
  • [4] Yuen. H.P. (2012). Security significance of the trace distance criterion in quantum key distribution. arXiv:1109.267Sv3.
  • [5] Yuen. HP. (2012). Unconditional security in quantum key distribution. arXiv:l 205.5065v2.
  • [6] Yuen, H.P. (2009). Key generation: Foundation and a new quantum approach. IEEE J. Selected Topics in Quantum Electronics, 15, 1630.
  • [7] Merali, Z, (2009). Hackers blind quantum cryptographers . Nature News, DOI:10.1038/news.2010.436.
  • [8] Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V. (2011). Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nature Commun., 2, 349 DOI: 10.1038/ncomms1348.
  • [9] Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V. (2010). Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics, 4, 686-689, DOI: 10.1038/NPHOTON.2010.214.
  • [10] Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Scarani, V., Makarov, V., Kurtsiefer, C. (2011). Experimentally faking the violation of Bell’s inequalities. Phys. Rev. Lett., 107,170404, DOI: 10.1103/PhysRevLett.107.170404.
  • [11] Makarov, V., Skaar, J. (2008). Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols. Quantum Inf. Comp., 8, 622-635.
  • [12] Wiechers, C., Lydersen, L., Wittmann, C., Elser, D., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G. (2011). After-gate attack on a quantum cryptosystem. New J. Phys., 13, 013043, DOI: 10.1088/1367-2630/13/1/013043.
  • [13] Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V. (2010). Thermal blinding of gated detectors in quantum cryptography. Opt. Express, 18, 27938-27954, DOI: 10.1364/OE.18.027938.
  • [14] Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G. (2011). Device calibration impacts security of quantum key distribution. Phys. Rev. Lett., 107, 110501, DOI: 10.1103/PhysRevLett.107.110501.
  • [15] Lydersen, L., Skaar, J., Makarov, V. (2011). Tailored bright illumination attack on distributed-phase-reference protocols. J. Mod. Opt., 58, 680-685. DOI: 10.1080/09500340.2011.565889.
  • [16] Lydersen, L., Akhlaghi, M.K., Majedi, A.H., Skaar, J., Makarov, V. (2011). Controlling a superconducting nanowire single-photon detector using tailored bright illumination. New J. Phys., 13,113042, DOI: 10.1088/1367-2630/13/11/113042.
  • [17] Lydersen, L., Makarov, V., Skaar, J. (2011). Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography”. Appl. Phys. Lett., 99, 196101, DOI: 10.1063/1.3658806.
  • [18] Sauge, S., Lydersen, L., Anisimov, A., Skaar, J., Makarov, V. (2011). Controlling an actively-quenched single photon detector with bright light. Opt. Express, 19, 23590-23600.
  • [19] Lydersen, L., Jain, N., Wittmann, C., Maroy, O., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G. (2011). Superlinear threshold detectors in quantum cryptography. Phys. Rev. Lett., 84, 032320, DOI: 10.1103/Phys RevA.84.032320.
  • [20] Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V. (2010). Avoiding the blinding attack in QKD; Reply (Comment). Nature Photonics, 4, 801-801, DOI: 10.1038/nphoton.2010.278.
  • [21] Makarov, V. (2009). Controlling passively quenched single photon detectors by bright light. New J. Phys., 11, 065003, DOI: 10.1088/1367-2630/11/6/065003.
  • [22] Kish, L.B., Mingesz, R., Gingl, Z. (2007). Unconditionally secure communication via wire. SPIE Newsroom, DOI: 10.1117/2.1200709.0863.
  • [23] Johnson, J.B. (1927). Thermal agitation of electricity in conductors. Nature, 119, 50-51.
  • [24] Nyquist, H. (1928). Thermal agitation of electric charge in conductors. Phys. Rev., 32, 110-113.
  • [25] Born, M., Heisenberg, W., Jordan, P. (1926). Quantum mechanics II. Z. Phys., 35, 557-615.
  • [26] Allahverdyan, A.E., Nieuwenhuizen, T.M . (2000). Extraction of work from a single thermal bath in the quantum regime. Phys. Rev. Lett., 85, 1799-1802.
  • [27] Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H. (2003). Extracting work from a single heat bath via vanishing quantum coherence. Science, 299, 862-864.
  • [28] Kish, L.B. (2011). Thermal noise engines. Chaos Solitons Fractals, 44, 114-121, http://arxiv.org/abs/1009.5942
  • [29] Kish, L.B. (2009). Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states. Phys. Lett., A, 373, 911-918.
  • [30] Kish, L.B., Khatri, S., Sethuraman, S. (2009). Noise-based logic hyperspace with the superposition of 2^N states in a single wire. Phys. Lett., A, 373, 1928-1934.
  • [31] Bezrukov, S.M., Kish, L.B. (2009). Deterministic multivalued logic scheme for information processing and routing in the brain. Phys. Lett., A, 373, 2338-2342.
  • [32] Gingl, Z., Khatri, S., Kish, L.B. (2010). Towards brain-inspired computing. Fluct. Noise Lett., 9, 403-412.
  • [33] Kish, L.B., Khatri, S., Horvath, T. (2011). Computation using noise-based logic: Efficient string verification over a slow communication channel. Eur. J. Phys., B, 79, 85-90, http://arxiv.org/abs/1005.1560
  • [34] Peper, F., Kish, L.B. (2011). Instantaneous, non-squeezed, noise-based logic. Fluct. Noise Lett., 10, 231-237, http://www.worldscinet.com/fnl/10/1002/open-access/S0219477511000521
  • [35] Wen, H., Kish, L.B., Klappenecker, A., Peper, F. (June 2012). New noise-based logic representations to avoid some problems with time complexity. Fluct. Noise Lett., 11, 1250003.
  • [36] Mullins. J. (2010). Breaking the noise barrier. New Scientist, 2780, http://www.newscientist.com/article/mg20827801.500-breaking-the-noise-barrier. html?full=true
  • [37] Kish, L.B. (2006). Totally secure classical communication utilizing Johnson(-like) noise and Kirchhoff’s law. Phys. Lett., A, 352, 178-182.
  • [38] Cho, A. (2005). Simple noise may stymie spies without quantum weirdness. Science, 309, 2148, http://www.ece.tamu.edu/~noise/news_files/science_secure.pdf
  • [39] Kish, L.B. (2006). Protection against the man-in-the-middle-attack for the Kirchhoff-loop-Johnson(-like)-noise cipher and expansion by voltage-based security. Fluct. Noise Lett., 6, L57-L63, http://arxiv.org/abs/physics/0512177
  • [40] Mingesz, R., Gingl, Z., Kish, L.B. (2008). Johnson(-like)-noise-Kirchhoff-loop based secure classical communicator characteristics, for ranges of two to two thousand kilometers, via model-line. Phys. Lett., A, 372, 978-984.
  • [41] Palmer, D.J. (2007). Noise encryption keeps spooks out of the loop. New Scientist, 2605, 32, http://www.newscientist.com/article/mg19426055.300-noise-keeps-spooks-out-of-the-loop.html
  • [42] Kish, L.B., Horvath, T. (2009). Notes on recent approaches concerning the Kirchhoff-law-Johnson-noise-based secure key exchange. Phys. Lett., A, 373, 901-904.
  • [43] Scheuer, J., Yariv, A. (2006). A classical key-distribution system based on Johnson (like) noise - How secure? Phys. Lett., A, 359, 737-740.
  • [44] Kish, L.B., Scheuer, J. (2010). Noise in the wire: The real impact of wire resistance for the Johnson(-like) noise based secure communicator. Phys. Lett., A, 374, 2140-2142.
  • [45] Kish, L.B. (2006). Response to Scheuer-Yariv: “A classical key-distribution system based on Johnson (like) noise - How secure?”. Phys. Lett., A, 359, 741-744.
  • [46] Hao, F. (2006). Kish’s key exchange scheme is insecure. IEE Proc. Inform. Soc., 153, 141-142.
  • [47] Kish, L.B. (2006). Response to Feng Hao’s paper “Kish’s key exchange scheme is insecure”. Fluct. Noise Lett., 6, C37-C41.
  • [48] Liu, P.L. (2009). A new look at the classical key exchange system based on amplified Johnson noise. Phys. Lett., A, 373, 901-904.
  • [49] Horvath, T., Kish, L.B., Scheuer, J. (2011). Effective privacy amplification for secure classical communications. Europhys. Lett., 94, 28002, http://arxiv.org/abs/1101.4264
  • [50] Kish, L.B., Saidi, O. (2008). Unconditionally secure computers, algorithms and hardware. Fluct. Noise Lett., 8, L95-L98.
  • [51] Kish, L.B., Mingesz, R. (2006). Totally secure classical networks with multipoint telecloning (teleportation) of classical bits through loops with Johnson-like noise. Fluct. Noise Lett., 6, C9-C21.
  • [52] Kish, L.B,, Peper, F. (2012). Information networks secured by the laws of physics. IEICE Trans. Commun., E95-B, 1501-1507.
  • [53] http://en.wikipedia.org/wiki/Quantum_computer
  • [54] Wiesner, S. (1983). Conjugate coding. SIGACT News, 15, 78-88.
  • [55] Bennett, C.H., Brassard, G. (1983). Quantum cryptography and its application to provably secure key expansion, public-key distribution, and coin-tossing. In Proc. IEEE Int. Symp. Inform. Theor., St-Jovite, Canada, 91.
  • [56] Brassard, G., (2005). Brief history of quantum cryptography: A personal perspective. In Proc. IEEE Information Theory Workshop on Theory and Practice in Information Theoretic Security, Awaji Island, Japan, 19-23.
  • [57] Xu, F., Qi, B., Lo, H.K. (2010). Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys., 12, 113026, http://arxiv.org/abs/1005.2376
  • [58] Liang, Y., Poor, H.V., Shamai, S. (2008). Information theoretic security. Foundations Trends Commun. Inform. Theory, 5, 355-580, DOI: 10.1561/0100000036.
  • [59] Vincent Poor, private communication.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0113-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.