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Abstract: Paper presents both methods of the most advanced 
thermal annealing as well as available methods of testing the 
magnetoelastic properties of soft magnetic materials for technical 
applications. Selected features and conditions important for 
annealing of ring-shaped cores made of the magnetoelastic 
amorphous ribbons are described and an example of thermo-
magnetic processing is shown. Unified methodologies for testing 
of magnetoelastic properties of the frame-shaped and the ring-
shaped cores, for both compressive and tensile stresses are 
presented. 
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oft magnetic materials are widely used in different 
technical applications, as the cores of inductive com-

ponents [1] recently mainly for switching mode power 
conversion [2], power transformers, current transformers 
[3] and surge protectors as well as cores of 
magnetomechanical sensors [4]. In all these applications 
both amorphous and  crystalline soft magnetic materials 
can be applied. However, both these materials have to be 
subjected to thermal annealing [1], until they achieve 
required magnetic properties. 
 Influence of different modes of thermal annealing on 
magnetic properties of soft magnetic materials is recently 
intensively studied from both theoretical and technical 
point of view [5]. On the other hand, these studies are 
focused mainly on changes of magnetic properties during 
annealing, whereas increase of magnetoelastic stress sensi-
tivity is often neglected. In technical applications, stress 
sensitivity of magnetic materials may be very crucial. 
First of all, due to miniaturization of magnetic compo-
nents, even relatively small forces applied during assem-
bling process may generate significant mechanical stresses 
in the cores of inductive components. This may lead to 
decrease of its permeability and increase of the core losses 
[6]. As a result high stress sensitivity of the core may lead 
to malfunction of the device due to overheating of the 
inductive element. 

 Presented paper is trying to fill this lack. It presents 
both methods of the most advanced thermal annealing as 
well as available methods of testing the magnetoelastic 
properties of soft magnetic materials for technical applica-
tions. As a result it may be the base of development of 
unified methodology of thermal annealing in industrial 
scale with control of magnetoelastic properties of soft 
magnetic materials. 
 
 
1.�Influence of thermal annealing  

on functional properties of soft 
magnetic materials 

Magnetoelastic Villari effect is connected with the chang-
ing of the total free energy of the magnetic material under 
the influence of stresses caused by external forces. The 
total free energy E of a magnetized sample may be pre-
sented as a sum of the individual free energies [7]: 
  

 

H D R WE E + E E E Eσ= + + +                 (1) 
 

where: EH is the energy of the magnetising field H, ED is 
the energy of demagnetization of the sample, ER is the 
random anisotropy energy, Εσ  is the magnetoelastic ener-
gy and EW is exchange energy. The magnetoelastic energy 
Eσ is given by [8]:  

23 sin
2 sEσ λ σ φ=                                (2) 

 

where λs is the saturation magnetostriction and φ is the 
angle between magnetisation Ms and the direction of the 
stress σ.  
  

The magnetoelastic sensitivity is connected with par-
ticipation of magnetoelastic energy Εσ in the total free 
energy E of the sample. If this participation is increases, 
stress sensitivity increases as well. Due to the fact, that 
thermal annealing reduces residual stresses in the sample, 
it increases participation of magnetoelastic energy Eσ and 
leads to increase of stress sensitivity. Moreover, the nearly 
zero magnetostrictive magnetic materials, (such as cobalt 
based amorphous alloys) are also stress sensitive. It is 
caused by the fact, that saturation magnetostriction λs of 
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shown in fig. 2. In all cases the cores exhibited coercive 
field < 0.9 A/m and total losses lower than 3 W/kg at 
20 kHz and magnetization 0.3 T. This was achieved also 
due to successful control of the strain of individual turns 
of the ribbon on the underlying layers compensating the 
shrinkage of the ribbon imposed by nanocrystallization, 
however, without a significant decrease of the packing 
fraction of the core itself.   
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the material is stress dependant [9]. As a result nearly 
zero magnetostrictive materials exhibit significant 
magnetostriction under mechanical stresses [10]. 
 
2.�Developement of methodology  

of thermal annealing 
Rapidly quenched materials in form as the ribbons are 
almost never used as soft magnetic materials in as-
quenched state – the suitable thermal or thermomagnetic 
treatment, (i. e. simultaneous application of both thermal 
exposure and suitably oriented external magnetic field), is 
necessary to optimize or tailor selected magnetic parame-
ters and to stabilize them. This holds even more strongly 
for magnetic circuits from nanocrystalline rapidly 
quenched alloys, (where the optimal nanograin size and 
content are achieved through controlled transformation 
from amorphous state as a necessary), yet not sufficient, 
prerequisite for obtaining high-performance soft magnetic 
properties. The effects described above, especially the 
magnetoelastic sensitivity, have to be taken into account. 
Additionally, application of external magnetic field during 
thermal treatment can selectively enhance important 
magnetic characteristics of the treated material [11].  
 In order to be able to control the thermal treatment of 
the cores magnetic areas, especially with non-negligent 
mass (exceeding several grams), a special furnace has to 
be used. Such a furnace has to be able to allow ramping to 
or from selected isothermal annealing temperature with 
rates ranging from 0.1 to about 10 K/min, has to have 
temperature stability typically better than 1 K.  
 At the same time it has to allow for reasonably small 
yet controlled thermal gradients imposed onto the an-
nealed magnetic circuit. In order to minimize stresses due 
to thermal expansion of the magnetic material upon heat-
ing and its contraction during relaxation annealing (an-
nealing out of free volume) or nanocrystallization (due to 
differences between specific mass the material in amor-
phous and nanocrystalline states). In addition, it has to 
allow application of external, either transversal or longi-
tudinal (or both), magnetic field with respect to the orien-
tation of the future magnetic flux lines of the device. 
 One possible example of furnace capable of transversal 
field annealing of ring-shaped magnetic circuits from rap-
idly quenched ribbons is a two-piece furnace with flat 
circular heaters from non-magnetic heating wires 
(Nicrothal). Ring-shaped core to be annealed is placed 
between the heaters containing a set of several thermo-
couples to control thermal gradient in the heated zone and 
the entire assembly is placed in a water-cooled gas-tight 
container in order to ensure a suitable annealing atmos-
phere (typically inert gas). The height of such assembly 
can be as low as 80 mm and can be placed between poles 
of a suitable electromagnet which can apply a field of up 
to 0.5 T. Figure 1 shows the realization of such device 
capable of annealing of ring-shaped with outer diameter 
up to 130 mm and height up to 25 mm.  
 Hysteresis loops of three  500 g ring-shaped cores 
wound from classical Fe-Cu-Nb-Si-B (Finemet) ribbons 
25 mm wide in different applied transversal field are 

Fig. 1. Device for thermal annealing of ring-shaped cores in 
transversal magnetic field: 1, 2 – magnet polepieces,  
3 – furnace with ring-shaped core 

Rys. 1. Urządzenie do wyżarzania rdzeni pierścieniowych 
w poprzecznym polu magnetycznym: 1, 2 – jarzma ma-
gnetyczne, 3 – piec z rdzeniem pierścieniowym 
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Fig. 2. Quasistatic, magnetic B(H) hysteresis loops of 500 g 

Finemet ring-shaped cores with outer diameter 130 mm 
annealed at 823 K for 1 hour without and with applied 
transversal magnetic field using the thermomagnetic an-
nealing device  

Rys. 2. Quasi-statyczne pętle histerezy magnetycznej B(H) 
rdzeni pierścieniowych o masie 500 g i średnicy ze-
wnętrznej 130 mm, wyżarzonych w temperaturze 823 K 
przez 1 godzinę, w zróżnicowanym, poprzecznym polu 
magnetycznym  
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3.�Testing of magnetoelastic properties 
of soft magnetic materials 

Investigation on the magnetoelastic properties of soft 
magnetic materials is connected with measurements of 
magnetic hysteresis loop B(H) under the presence of me-
chanical stresses σ. On the result of these measurements 
parameters, important from technical point of view, can 
be calculated. As a result there are two most important 
requirements for magnetoelastic testing methodology: 
− magnetic circuit of the sample has to be closed. If 

magnetic circuit is open, the significant values of de-
magnetization energy appear. As a result, permeabil-
ity and stress sensitivity of such sample is significant-
ly limited, 

− distribution of stresses have to be uniform to enable 
physical interpretation of magnetoelastic phenomena. 

 Presented methods of magnetoelastic testing fulfill 
both these requirements for compressive and tensile 
stresses. As a result they are especially useful for 
magnetoelastic investigations. 
 
3.1.�Frame shaped cores 

In the case of bulk crystalline materials, such as steels or 
soft magnetic ferrites, the frame-shaped core can be used 
for magnetoelastic tests [12, 13]. The method of applying 
of the compressive force F to the frame-shaped sensing 
element is presented in fig. 3, whereas method of applying 
tensile stresses is presented in fig. 4.  
 
 

 
 
 
 
Fig. 3. Frame-shaped core subjected to compressive stresses: 

1 – core under investigation, 2 – sense winding,  
3 – magnetizing winding 

Rys. 3. Rdzeń ramkowy w trakcie obciążania siłą ściskającą:  
1 – rdzeń ramkowy, 2 – uzwojenie pomiarowe, 3 – uzwo-
jenie magnesujące 

 The frame-shaped core provides the closed magnetic 
circuit. Due to the special nonmagnetic backings and force 
reversing mechanical system both the compressive and 
tensile stresses in the core’s columns could be applied in 
the range up to 100 MPa. 
 

 
Fig. 4. Mechanical force F reversing system for application of 

the tensile stresses to the frame-shaped core: 1 – frame-
shaped core, 2 – moving element, 3 – sample holder,  
4 – column, 5 – base, 6 – upper cover 

Rys. 4. Rewersor mechaniczny do zadawania naprężeń rozcią-
gających do rdzenia ramkowego: 1 – rdzeń ramkowy,  
2 – element ruchomy, 3 – uchwyt rdzenia, 4 – kolumna,  
5 – podstawa, 6 – uchwyt górny 

 
 In the case of both tensile and compressive stress 
investigation both magnetizing and detecting winding 
were made on the frame-shaped core as it is presented in 
fig. 3. These winding enable measurements of the changes 
of the magnetic hysteresis loop B(H) under the influence 
of the stresses with standard histeresisgraph system. 
 
3.2. Ring shaped cores 

In the case of ribbon magnetic materials, such as soft 
amorphous alloys, possibilities of application of frame-
shaped cores for magnetoelastic tests are significantly 
limited. For this reason, in the case of these cores, ribbon 
ring shaped cores should be used. However, application of 
the force in direction of diameter of such core may lead to 
non-uniform distribution of stresses. Moreover in such 
a case, both compressive and tensile stresses are gene-
rated [14].  
 To achieve uniform distributions of stresses in ring-
shaped core, force should be applied perpendicularly to 
the base of the core as it is presented in fig. 5. It should 
be indicated, that this method creates the possibility of 
generation both compressive and tensile stresses in 
the core. 

 

 
 
 
 
Fig. 3. Frame-shaped core subjected to compressive stresses: 

1 – core under investigation, 2 – sense winding,  
3 – magnetizing winding 

Rys. 3. Rdzeń ramkowy w trakcie obciążania siłą ściskającą:  
1 – rdzeń ramkowy, 2 – uzwojenie pomiarowe, 3 – uzwo-
jenie magnesujące 
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Fig. 7. Method of application of uniform tensile stresses to the 

ring-shaped sample: a) idea of the method, b) device for 
practical realization of this idea: 1 – main shaft, 2 – upper 
backing, 3 – ring-shaped core under investigation,  
4 – steel ball, 5 – core backings, 6 – lower backing, 7 – tube 

Rys. 7. Metoda zadania jednorodnych naprężeń rozciągających 
do rdzenia pierścieniowego: a) zasada działania,  
b) urządzenie do zadawania naprężeń rozciągających:  
1 – wał główny, 2 – nakładki górne, 3 – badany rdzeń 
pierścieniowy, 4 – kulka stalowa, 5 – nakładki rdzenia,  
6 – nakładki dolne, 7 – rura 

 
 Ring-shaped core (3), subjected to magnetoelastic 
tests, is fixed to core backings (5). Next, each of these 
backings was fixed to upper backing (2) or lower backing 
(6). In backings (5) and (6) special holes were drilled, to 
enable core to be winded by magnetizing and sensing 
windings. Compressive force F generated by hydraulic 
press is transferred by shaft (1) and ball (2) to the lower 
backing (6). Presented device acts as mechanical reversing 
system. As a result, compressive force F generates uniform 
tensile stresses in the core (4). Also in this case, the 
changes of magnetic hysteresis loop B(H) under the influ-
ence of the stresses are measured with standard hysteresis 
graph system. 
 Example of such result achieved for Fe77Cr2B16Si5 in 
as-quenched state is presented in fig. 8. In spite of the 
fact, that magnetoelastic effects for compressive and ten-
sile stresses were measured with different mechanical 
setups, B(σ)H dependences are continuous. Moreover max-
imum on the B(σ)H characteristics can be observed. This 
is so called Villari point [17], which is very important for 
theoretical explanation of magnetoelastic Villari effect. 

 
 
Fig. 5. Idea of the method of applying the uniform compressive 

stress to the ring core.  
Rys. 5. Metoda zadawania jednorodnych naprężeń ściskających 

do rdzenia pierścieniowego 

 
 Device for generation of uniform, compressive stresses 
in the ring-shaped core [15] is presented in fig. 6. Base 
backings (3) allow a ring core (1) to be subjected of the 
compressive force F. Due to the special, nonmagnetic 
cylindrical backing (2) the distribution of stresses in the 
core is uniform. Measuring and magnetizing windings are 
placed in grooves (2a) at the cylindrical backings (2). 
 
 

 
 

 
Fig. 6. Schematic diagram of the device for applying the uniform 

compressive stress to the ring core [12]: 1 – investigated ring 
core, 2 – nonmagnetic cylindrical backing, 2a – grooves 
for windings, 3 – base backings 

Rys. 6. Urządzenie do zadawania naprężeń ściskających do 
rdzenia pierścieniowego: 1 – badany rdzeń, 2 – niema-
gnetyczne, cylindryczne nakładki, 2a – nacięcia na uzwo-
jenie, 3 – nakładki bazowe 

 
 The idea of application of tensile stresses to the ring 
shaped core [16] is presented in fig. 7a, whereas technical 
device is presented in fig. 7b.  
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 The idea of application of tensile stresses to the ring 
shaped core [16] is presented in fig. 7a, whereas technical 
device is presented in fig. 7b.  
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4.�Summary 
Methodology of thermal annealing presented in the paper 
together with methods of testing the magnetoelastic prop-
erties of soft magnetic materials create new possibility of 
testing the functional properties of these materials for 
industrial applications. Utilizing these methods, not only 
magnetic, but also magnetoelastic properties of magnetic 
materials may be optimized. It is especially important in 
the case of the modern, miniaturized components, where 
even small forces may lead to significant stresses. This 
may result in changes of functional properties of the core 
of inductive component leading to malfunction of electron-
ic device, such as switching mode power supply. 
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Wyżarzanie materiałów magnetycznie miękkich 

i metody badania ich właściwości  
magnetosprężystych 

 
Streszczenie:  W artykule przedstawiono zarówno nową metodę 
relaksacji termicznej w materiałach magnetycznie miękkich, jak 
i metody pomiaru charakterystyk magnetosprężystych w tych 
magnetykach. W artykule przedstawiono także wybrane wyniki 
pomiaru wpływu procesu relaksacji termicznej w obecności pola 
magnetycznego na charakterystyki magnesowania stopów amor-
ficznych, jak również wyniki pomiaru charakterystyk magneto-
sprężystych. Należy podkreślić, że z wykorzystaniem przedsta-
wionej w pracy metodyki możliwy jest pomiar charakterystyk 
magnetomechanicznych zarówno w zakresie naprężeń ściskają-
cych, jak i rozciągających.  

Słowa kluczowe: materiały magnetycznie miękkie, wyżarzanie, 
właściwości magnetosprężyste 
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