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Abstract: In the paper the positive linear discrete-time non-
commensurate fractional-order systems described by the state
equations are considered. Definition and necessary and sufficient
conditions for the positivity, reachability and controllability to zero
are given and proven. The considerations are illustrated by
a numerical example.
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he fundamental question for dynamic system modeled

by state space representation is to determine whether
it is possible to transfer state from a given initial state to
any other state. The reachability and controllability prob-
lems for linear fractional-order state-space system have
been studies for some time already.

1. Introduction

The concept of non-integer derivate and integral is in-
creasingly used to model the behavior of real systems in
various fields of science and engineering. The mathemati-
cal fundamentals of fractional (non-integer) calculus are
given in the monographs [11, 12, 18]. This idea has been
used by engineers for modelling different process and
designing fractional order controllers for time-delay sys-
tems [2, 9].

The state-space representation of fractional-order
discrete-time system was introduced in [3, 4] and more
clear and suitable definitions of reachability, controllabil-
ity and observability are given. It emerged that for frac-
tional-order system, two different interesting types can be
considered: the commensurate order and the non-
commensurate order systems. The system is a commensu-
rate order if the differentiation order is taken the same for
all the state variable.

In the monograph [6] new classes of commensurate
fractional order positive systems: continuous and discrete-
time were introduced and necessary and sufficient condi-
tions for reachability and controllability were given. In
positive systems inputs, state variables and outputs take
only non-negative values for non-negative initial condi-
tions and non-negative controls. Examples of positive
systems are given in monograph [7] and quoted there
literature.

Positive linear systems are defined on cones and not
on linear spaces. Therefore, theory of positive systems is

more complicated and less advanced. Recently, the reach-

ability, controllability and minimum energy control of
positive linear discrete-time systems with time-delays have
been considered in [1, 7, 14].

In this paper using recent results, given in [3, 4, 5, 6,
8, 16, 17], a problem of reachability and controllability of
non-commensurate fractional-order positive discrete-time
systems will be considered. The paper is organized as
follows. In section 2 using the fractional backward differ-
ence the definition of the positive non-commensurate
fractional-order discrete time systems is introduced and
basic system properties are given as well. For such
a system the necessary and sufficient conditions for the
reachability and controllability are established in sections
3 and 4, respectively. A numerical example is given in
section J.

2. Linear discrete-time fractional-order
systems

Let ®R™™ be the set of nxm matrices with entries from
the field of real numbers and R" =R™. The set of nxm
real matrices with nonnegative entries will be denoted by
R and R" =R,
will be denoted by Z,, and nxn identity matrix by I,.

The set of nonnegative integers

In this paper the following definition of a generaliza-
tion fractional order backward difference will be used 6,
11, 12]

A" x (i) = 111“%0(—1#[0,’;},0 k), (1)

where ;€ R is an order of the fractional difference, £ is
the sampling interval and i€ Z, is a number of the sam-
ple for which the difference is calculated and the Newton’s
binomial coefficients can be obtained from
o 1 k=0
( kjj =Jo(a; —)-(o; =k +1)
k!

According to this definition, it is possible to obtain
a discrete equivalent of the derivative (when o ; 1s posi-
tive), a discrete equivalent of the integration (when a; is
negative) and, when o =0, the original function.
Consider the linear non-commensurate fractional-order
discrete-time linear system, described by the state-space
equations
A x(i +1) = Ax(i) + Bu(i), i€ Z,, (3a)

(i) = Cx(i) + Dui), (3b)
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where
A% x, (i +1)
AN x(i+1)= e R", (4a)
A%x, (i+1)
in which
O<a, <l for j=l..q, q<n, (4b)

denote any fractional orders, and
x, (1)
x()=| : |eR", (4c)
x,(0)

where x;(i)e R" (j=1,.,q) are components of the state
vector x(i)e R", n=n +---n, and

Ay e Ay,
A= o |ewm, (4d)
A

gl qq

A]g c ginkxnj ,
y(i)eR”,
with the initial condition

xo =x(0) =[x,(0)

Be R, Ce RP", DeR”", u(i)e R",

x, (0] e K" (5)

Note that for some a; =1, we obtain first-order back-
ward difference and the classical integer-order state-space
equation

x;i+1)=[4; A, 1x (@) +x (D). (6)
This case will be classified as a non-commensurate real-
order discrete-time system.

In the case of commensurate fractional-order, the
difference order is taken the same for all the state varia-
bles x;(i)e RY, j=1,..q,ie.

g =a,==a,=a. (7)

Then the state-space equation (3a) reduces to the form

(3, 6]

A%x(i +1) = Ax(i) + Bu(i). (7a)

Therefore, a theory of commensurate fractional-order

systems is less complicated and more advanced. Some

properties of such systems are presented in [3, 6, 11, 12,
17, 18).
Let

where the binomial is given by (2).
Using the definition (1) for =1 we may rewrite the

equation (3a) in the form
i+1
X +1) = Agx(i) + S AXG—k+1), i€Z,  (9)
k=2

where
4, =A+a, (9a)
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@ = diagley1,, a,l, e qRn (9b)

Ak: = diag[ck(al)lnl Ck (aq)Inq} € 9{“1”7 k= 27 37 (9C)

In the case of non-commensurate real-order, in formu-
las (9b) and (9c) we substitute for &; =1, respectively
al, =1, (10a)

(10b)

In the case of commensurate fractional-order, the
system is described by equation (9), where the matrices
(9a) and (9c) take the following expressions:

Az =A+d,,
A, =c ()], k=23,...

(11a)
(11b)

where coefficients ¢, are given by (8) for 0<a<1.

Note that the fractional discrete-time linear system (9)
is the classical discrete-time system with delays increasing
with the number of samples ie Z, [4, 6]. From (8) it
follows that coefficients ¢, (e;), k=12,... strongly de-
crease to zero for any fractional orders 0O<e;<l,
j=1..,¢q when j increases to infinity.

Theorem 1. [6] The solution of equation (3a) with initial
conditions (5) is given by

i-1
x(i) =D;xy + Zo(bi—l—jBu(j)a (12)
=

where the fundamental (transition) matrix ®; is deter-
mined by the equation

_ i+l
D, =(A+a)®, + kngkq)i—kH (13)

with the initial conditions
Oy=1, ®,=0 dla i<0, (14)
where matrices @ and 4, are given by (9b) and (9c).

The proof using the Z transform is similar as is given
in [6, 8] in the case of commensurate fractional-order
discrete time system.

Note that the solution (12) of fractional state equation
can be derived using the recursive formula (9) for x(i),
1=0,1,2,...
ing the inverse Z transform [4].

and the initial condition (5) without apply-

Definition 1. [6, 17] The any fractional-order system (3)
is called the (internally) positive fractional system if and
only if x({)e R} and y@)e R?,
conditions x, € R
ieZ,.

The following two lemmas will be used in the proof of

ie Z, for any initial
and all input sequences u;€RY,

the positivity of the fractional system (3).
Lemma 1. [6] If the order of the fractional difference «;
satisfies

O<a; <l (15)



then coefficients (8) are
ale)>0 k=12,..
The proof of the lemma is given in [6].

positive, ie.

Lemma 2. If the order of the difference « g satisfies the
condition 0< « ;< 1 and

Ay =A+ae Ry, (16)

then fundamental matrices (13) have only nonnegative
entries, i.e.
D, eR", ieZ,. (17)

Proof. Using (13) for i=1,2,...
matrices @, of the forms:
D, =4,

D, = A,®, + 4,0, = A + 4,

we obtain fundamental

(18a)
(18b)

Dy =4, D, + 4,0, + 4D, = A; + Ay A, + A, Ay + Ay, (18¢)

D, = A, D, +AD, .+ AP = AL+ AL+ A,
(18d)
where matrices 4, and A4, are given by (9a) and (9¢) in
the case of a non-commensurate fractional-order and by
(11a)-(11b) in the case of a commensurate fractional-
order.
From Lemma 1 and the above it follows that the con-
dition (17) can be satisfied if and only if the condition
(16) holds. [

Theorem 2. The any fractional discrete-time system (3)
is positive if and only if

O<a;<1 for j=1,..,9, q<n, (19a)
A, =A+oe Ry, (19b)
BeRT™, Ce R, De RV, (19¢)

where matrix A4, is given by (9a) or (11a).

Proof. Sufficiency: If the condition (19b) is satisfied then
by Lemma 2 @, e R holds for i=0,1,2,... If (17) and
(19¢) are satisfied then from (9) and (3b) we have
x()e R and y(i)e RY for every ie Z, since x,eNR]
and u(i)e R}, ieZ,.

Necessity: Let u, =0 for ie Z,. Assuming that the sys-
tem is positive from (9) for i=0 we obtain x(1)= 4,x,
and from (3b) we have y(0)=Cx,eRY. This implies
Ay € R and Ce RY since x,e R). by definition 1 is
arbitrary. Assuming x, =0 from (9) for i=0 we obtain
x(1) = Bu(0) e R} and  from (3b) we  have
»(0)=Du(0)e R?  which  implies Be R  and
De R, since u(0)e R by Definition 1 is arbitrary.

3. Reachability of the positive fractional
systems

Let e,
matrix . A column ae; for a>0 is called the monomial

i=12,...,n, be the ith column of the identity

column, i.e. its one component is positive and the remain-
ing components are zero.

Taking into account papers [3, 6, 8, 17] we may formulate
the following definition of reachability of the positive any
fractional-order system.
Definition 2. The positive any fractional-order system
(3) is called reachable if for every state x,e R} there
exists a mnatural number N and an input sequence
u()e Ry, i=0,12,..N—1, which steers the state of the
system (3) from zero initial state (5) (i.e. x,=0) to the
desired final state x, e R..
Theorem 3. The positive any fractional-order system (3)
for 0< a;<1, j=l..,9, q<n,is reachable in N steps if
and only if the reachability matrix

Ry =[B,®,B,...,P,_B] (20)

contains N linearly independent monomial columns.
Proof. The solution of equation (3a) has the form (12).
For zero initial condition x, =0 and i=N we have

N-l N
Xp=xy =X Py Bu; =Ryuy , (21)
‘ =0

J

where the reachability matrix has the form (20) and an
input sequence has the following form

u(g—1)
ug = ”(qu) . (22)
u(0)

From Definition 2 and (21) it follows that for every

x,e Ry there exists an input sequence u(i)e RY,
i=0,12,..N—1, if and only if the matrix R, (20) con-
tains N linearly independent monomial columns. | |
Theorem 4. The positive non-commensurate fractional-
order system (3) for 0< a;<l, j=l.,q, g<n, is
reachable in N steps only if the matrix

[B,(A+@)B] (23)

contains N linearly independent monomial columns.
Proof. From (18) it follows that only the matrices
Be R and ®,Be RY" may contain linearly independ-
ent monomial columns.

This is due to the nature of the elements @,
i=23,...(13) which build up the reachability matrix (20)
and which exhibit the particularity of being time-varying,
in the sense that they are composed of nonzero diagonal
matrix 4,, k=2,3,...(9). [ |

Remark 1. From Theorem 3 and 4 it follows that if
a final state cannot be reached in N =2 steps, then it is
not reachable at all.

If the
Ry[RyRET € RY™™ then the nonnegative input vector

fractional system (3) is reachable and
(22) which steers the state of the system (3) from zero
initial state (5) (i.e.

x, € R} is given by the formula [1, 6]

Xxo=0) to the desired final state

uy =Ry[RyRy]x,. (24)
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4. Controllabilty of the positive
fractional systems

Taking into account papers [3, 6, 8, 17] we may formulate
the following definitions of controllability of the positive
any fractional-order system.
Definition 3. The positive any fractional-order system
(3) is called controllable to zero in N >0 steps if for any
nonzero initial state x,e R\ there exists an input se-
quence u(i)e R, i=0,1,...,N -1, which steers the state
of the system from nonzero initial condition (5) to zero
(x,=0).
Definition 4. The positive any fractional-order system
(3) is called controllable in N >0 steps if for any nonzero
initial state x,eRY there exists an input sequence
u(i)eRY, i=0,1,....,N -1, which steers the state of the
system from nonzero initial condition (5) to the desired
final state x, e RY.
Theorem 5. The positive any fractional-order system (3)
for O<e; <1, j=1,..,q, g<n, is controllable to zero in
N >0 steps if and only if

D, =0. (25)

Moreover u, =0 for ¢=0,1,....,N —1.
Proof. From equation (12) for x,=0 and i=N we
have

0= ,x,+Ryuy (26)

where the matrix R, has the form (20) and u} is defined
by (22).
It is well known that for finite N and A4+ae Ry,
O, eR”, x,eR!, RyeR™™ do not exist positive
u) € RV satisfying equation (26).
The equation (26) is satisfied for any nonzero initial con-
dition (5) and Ry e R if and only if the condition
(25) holds and u} = 0. [ ]
Theorem 6. The positive any fractional-order system (3)
for 0< o; <L, j=L..,q, g<n, is controllable to zero:
a) in N =1 step if and only if

A, =A+a =0, (27)

b) in an infinite number of steps if and only if the system
is asymptotically stable.
Proof. From (18), (9a) and (9c) it follows that the condi-
tion (25) can be satisfied if and only if the condition (27)
holds and N =1.
In case b) if the system is asymptotically stable then
;\PEL, D,x,=0 (28)

for every x,eRY. Moreover ®, —0 for N — oo and
¢ (@) —>0 Hence equation (26) is satisfied for uy =0
and by Theorem 5 the system is controllable in an infinite
number of steps. |
Remark 2. From formula (9b) it follows that the condi-
tion (27) can be satisfied if and only if the matrix 4 (4d)
is the diagonal matrix.

Theorem 7. The positive any fractional-order system (3)
for 0< a;<1, j=1..¢9, g<n,is controllable in N >0
steps only if
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xp=®yx,eR; (29)

and the reachability matrix R, (20) contains N linearly
independent monomial columns.
Proof. From equation (12) for x,e R} and i=N we
have

X, —®yx=Ryuyg (30)

where the matrix Ry has the form (20) and u, is defined
by (22).

It is well known that in the case x, —®yx,¢ R does not
exist positive u) € R satisfying equation (30).

From Definition 4 and (30) it follows that if the condition
(29) holds there exists an input sequence u(i)e RY,
i=0]l,2,... N—1, if and only if the matrix Ry (20) con-
tains N linearly independent monomial columns. |
Moreover, if the condition

Ry[RyRy]" € RI™" (31)

holds then the u(i)e Ry,
i=0,1,....,N —1, that transfers the system (3) from non-

sequence of controls

zero initial condition (5) to the desired final state
X, € RY can be computed from

uy = RY[RyRYT (x ) — D yxy). (32)

5. Example

Test reachability and controllability of positive non-
commensurate fractional system (3) with the matrices

-05 03 0
A= , B=| | (33)
0 =06 1
and o, =05, o, =0.6.

The system (3) with the matrices (33) is the positive
system, since

a

0 03
A, =A+a= e R, (34)
0 0 "

Using (20) for N =2 we obtain the reachability matrix

0 0.3
R, =[B,<I>IB]{1 . } (35)

which contains two linearly independent monomial col-
Therefore, by
commensurate fractional-order system is reachable in two

umns. Theorem 3 the positive non-
steps.
u; from (24) for the final state

X, = [1 Z]T we obtain

s_ g, _[0 03] 1T 2 56
o= xf_L 0} M_LO/J' (36)

We check out received result. Using (12) for matrices
(33) with the input sequence u(0)=10/3 and u(l)=2 we
obtain

Computing

0
x(1) = Bu(0) = {10/3} (37a)



x(2) = Ay x(1) + Bu(1) = m (37D)

Next, we test the controllability to zero of this system.
From (34) it follows that the case a) of Theorem 6 is not
satisfied. Therefore, the positive system is not controllable
to zero in one step.

Using (13) for ¢=1,2,... we obtain fundamental ma-
trices @, of the forms:

0 03
O =A+a= A
0 0

O -4 - 0.125 0 . £ =0
254 = 0.12 ecause, A, =
O A At A A 0.0625 0.0735 (3%)
3T T TE SIS 00 0.0560
0.0547 0.0355
@, = i
0  0.0480

From the above and Theorem 6 it follows that the posi-
tive system is controllable to zero in an infinite number of
steps.

Next, we find the sequence of inputs that transfers this

system from initial condition x, :[3 I]T to the final

state x, = [1 3]T.
Note that the conditions (29) of Theorem 7 are satis-
fied because the vector

2.8750
X, —®,x, = {0 6400% R? (39)

is nonnegative and the reachability matrix (35) contains
two linearly independent monomial columns. Therefore,
the positive system is controllable in 2 steps and the se-
quence of controls u(i)e R}, i = 0,1, computed from (32)

has the form

(40)

B 0.6400
ué :RzT[RszT] l(xf_®2x0):|: }

9.5833

To verify obtained result we find the solution of equa-
tion (3a) with matrices (33) and x,=[1 3],
u(0) =9.5833 , u(l)=0.64.

Using (12) for i=0,1 we obtain, respectively

0 3/1017 [o 0.9000
x(1)=dgxy + Bu(@)=| 7 T |+ |-9.583=

x(2) = A, x(1) + Ayx, + Bu(l) = m

6. Concluding remarks

The concept of positive system has been extended for the
linear discrete-time mnon-commensurate fractional-order
systems described by the state equations. Necessary and
sufficient conditions for the positivity (Theorem 2), reach-

ability (Theorem 3) and controllability to zero (Theo-
rem 4) for orders of the fractional difference «; satisfied
the following conditions 0< o; <L, j=1l..,q, g<n,
have been established.

Only sufficient conditions for controllability of such
a system have been given. A formula for computing
a nonnegative input u) (32) which steers the state of the
system (3) from initial state (5) to the desired final state
X, € RY has also been given.

The considerations can be easily extended for the

positive 2D fractional linear systems.
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Osiggalnos¢ i sterowalnosé dodatnich uktadow
dyskretnych niecatkowitego rzedu

Streszczenie: W pracy rozpatrzono liniowe stacjonarne dodatnie
uktady dyskretne niecatkowitego niewspdtmiernego rzedu. Sfor-
mutowano definicje oraz podano warunki konieczne i wystarcza-
jace dodatniosci, osiagalnosci i sterowalnosci uktadéw dyskret-
nych niewspoétmiernego rzeczywistego rzedu oraz wspoétmierne-
go niecatkowitego rzedu. Rozwazania zilustrowano przyktadem
numerycznym.

Stowa kluczowe: niecatkowity niewspdtmierny rzad, uktad
dyskretny, standardowy, dodatni, osiggalnosé, sterowalnosé
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