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Reachability and controllability of positive 
fractional-order discrete-time systems 
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Abstract: In the paper the positive linear discrete-time non-
commensurate fractional-order systems� described by the state 
equations are considered. Definition and necessary and sufficient 
conditions for the positivity, reachability and controllability to zero 
are given and proven. The considerations are illustrated by 
a numerical example. 

Keywords: non-commensurate fractional-order, positive, dis-
crete-time systems, reachability, controllability 

 
he fundamental question for dynamic system modeled 
by state space representation is to determine whether 

it is possible to transfer state from a given initial state to 
any other state. The reachability and controllability prob-
lems for linear fractional-order state-space system have 
been studies for some time already. 
 

1.�Introduction 
The concept of non-integer derivate and integral is in-
creasingly used to model the behavior of real systems in 
various fields of science and engineering. The mathemati-
cal fundamentals of fractional (non-integer) calculus are 
given in the monographs [11, 12, 18]. This idea has been 
used by engineers for modelling different process and 
designing fractional order controllers for time-delay sys-
tems [2, 9].  
 The state-space representation of fractional-order 
discrete-time system was introduced in [3, 4] and more 
clear and suitable definitions of reachability, controllabil-
ity and observability are given. It emerged that for frac-
tional-order system, two different interesting types can be 
considered: the commensurate order and the non-
commensurate order systems. The system is a commensu-
rate order if the differentiation order is taken the same for 
all the state variable.  
 In the monograph [6] new classes of commensurate 
fractional order positive systems: continuous and discrete-
time were introduced and necessary and sufficient condi-
tions for reachability and controllability were given. In 
positive systems inputs, state variables and outputs take 
only non-negative values for non-negative initial condi-
tions and non-negative controls. Examples of positive 
systems are given in monograph [7] and quoted there 
literature. 
 Positive linear systems are defined on cones and not 
on linear spaces. Therefore, theory of positive systems is 
more complicated and less advanced. Recently, the reach-

ability, controllability and minimum energy control of 
positive linear discrete-time systems with time-delays have 
been considered in [1, 7, 14]. 
 In this paper using recent results, given in [3, 4, 5, 6, 
8, 16, 17], a problem of reachability and controllability of 
non-commensurate fractional-order positive discrete-time 
systems will be considered. The paper is organized as 
follows. In section 2 using the fractional backward differ-
ence the definition of the positive non-commensurate 
fractional-order discrete time systems is introduced and 
basic system properties are given as well. For such 
a system the necessary and sufficient conditions for the 
reachability and controllability are established in sections 
3 and 4, respectively. A numerical example is given in 
section 5. 
 

2.�Linear discrete-time fractional-order 
systems 

Let mn×ℜ  be the set of mn ×  matrices with entries from 
the field of real numbers and �1nn ×ℜ=ℜ  The set of mn ×  
real matrices with nonnegative entries will be denoted by 

�mn×
+ℜ  and �1nn ×

++ ℜ=ℜ  The set of nonnegative integers 
will be denoted by �+Z  and  nn ×  identity matrix by �nI  
 In this paper the following definition of a generaliza-
tion fractional order backward difference will be used [6, 
11, 12] 
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where Rj ∈α  is an order of the fractional difference, h  is 
the sampling interval and +∈ Zi  is a number of the sam-
ple for which the difference is calculated and the Newton’s 
binomial coefficients can be obtained from  
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 According to this definition, it is possible to obtain 
a discrete equivalent of the derivative (when jα  is posi-
tive), a discrete equivalent of the integration (when jα  is 
negative) and, when ��=jα  the original function.  
 Consider the linear non-commensurate fractional-order 
discrete-time linear system, described by the state-space 
equations 

�������� iBuiAxix +=+Δα  �+∈ Zi          (3a) 

������� iDuiCxiy +=    (3b) 
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in which  
�� << jα   for  qj ������= ,  �nq ≤           (4b) 

 
denote any fractional orders, and 
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where jn

j ix ℜ∈�� �� qj ������= ) are components of the state 

vector ��� nix ℜ∈ � qnnn �+= � �and 
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jk nn

kjA
×ℜ∈ , �mnB ×ℜ∈ �npC ×ℜ∈  �mpD ×ℜ∈ ��� miu ℜ∈  

piy ℜ∈�� , 
with the initial condition 

��
��������� ��
nT

qxxxx ℜ∈== �           (5) 
 
 Note that for some ��=jα  we obtain first-order back-
ward difference and the classical integer-order state-space 
equation 

�����
���� � ixixAAix jjqjj +=+ �            (6) 

 
This case will be classified as a non-commensurate real-
order discrete-time system. 
 In the case of commensurate fractional-order, the 
difference order is taken the same for all the state varia-
bles  ��� jn

j ix ℜ∈ � qj ...,,�= , i.e. 
�	� αααα ==== q�    (7) 

 
Then the state-space equation (3a) reduces to the form 
[3, 6] 

�������� iBuiAxix +=+Δα      (7a) 
 

Therefore, a theory of commensurate fractional-order 
systems is less complicated and more advanced. Some 
properties of such systems are presented in [3, 6, 11, 12, 
17, 18]. 
 Let  
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where the binomial is given by (2). 
 Using the definition (1) for �=h  we may rewrite the 
equation (3a) in the form 
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where 
�αα += AA        (9a) 

 
nxn

nqn q
IIdiag ℜ∈= 
�

�� ααα �          (9b) 

 
�� ,,,])()([ �	

�� =ℜ∈= kIcIcdiagA nxn
nqknkk q

αα  (9c) 

 
 In the case of non-commensurate real-order, in formu-
las (9b) and (9c) we substitute for �=jα , respectively  

jj nnj II =α       (10a) 

 
�,,,)( �	� == kc jk α             (10b) 

 
 In the case of commensurate fractional-order, the 
system is described by equation (9), where the matrices 
(9a) and (9c) take the following expressions: 

�nIAA αα +=        (11a) 

����	�� == kIcA nkk α               (11b) 
 

where coefficients kc  are given by (8) for �� << α . 
 Note that the fractional discrete-time linear system (9) 
is the classical discrete-time system with delays increasing 
with the number of samples +∈ Zi  [4, 6]. From (8) it 
follows that coefficients ��	����� =kc jk α  strongly de-
crease to zero for any fractional orders ��� << jα  

,...,, qj �=  when j  increases to infinity. 
 
Theorem 1. [6] The solution of equation (3a) with initial 
conditions (5) is given by 
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where the fundamental (transition) matrix iΦ  is deter-
mined by the equation 

� Φ+Φ+=Φ
+

=
+−+

�

	
�� ��

i

k
kikii AA α        (13) 

 
with the initial conditions 

����� <=Φ=Φ idlaI i      (14) 
 
where matrices α  and kA  are given by (9b) and (9c). 
 The proof using the Z transform is similar as is given 
in [6, 8] in the case of commensurate fractional-order 
discrete time system. 
 Note that the solution (12) of fractional state equation 
can be derived using the recursive formula (9) for ���ix  

�,,, 	��=i  and the initial condition (5) without apply-
ing the inverse Z transform [4]. 
Definition 1. [6, 17] The any fractional-order system (3) 
is called the (internally) positive fractional system if and 
only if nix +ℜ∈��  and ��� piy +ℜ∈  +∈ Zi  for any initial 
conditions nx +ℜ∈�   and all input sequences �m

iu +ℜ∈  
�+∈ Zi  

 The following two lemmas will be used in the proof of 
the positivity of the fractional system (3). 
Lemma 1. [6] If the order of the fractional difference jα  
satisfies  

�� << jα       (15) 
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then coefficients (8) are positive, i.e. 
�,,)( 	�� => kc jk α  

 The proof of the lemma is given in [6]. 
Lemma 2. If the order of the difference jα  satisfies the 
condition �� ≤< jα  and 

�nnAA ×
+ℜ∈+= αα            (16) 

 
then fundamental matrices (13) have only nonnegative 
entries, i.e. 

�� +
×

+ ∈ℜ∈Φ Zinn
i            (17) 

 
Proof. Using (13) for �,, 	�=i  we obtain fundamental 
matrices iΦ  of the forms: 

�� αA=Φ     (18a) 

	
	

�	�	 AAAA +=Φ+Φ=Φ αα             (18b) 

 
��		

�
���		� AAAAAAAAA +++=Φ+Φ+Φ=Φ αααα  (18c) 

�	
	�		� q

qq
qqqq AAAAAAA +++=Φ++Φ+Φ=Φ −

−− ��

�

ααα
 

(18d) 
where matrices αA  and kA  are given by (9a) and (9c) in 

the case of a non-commensurate fractional-order and by 
(11a)-(11b) in the case of a commensurate fractional-
order. 
 From Lemma 1 and the above it follows that the con-
dition (17) can be satisfied if and only if the condition 
(16) holds.         � 
Theorem 2. The any fractional discrete-time system (3) 
is positive if and only if  

�� ≤< jα   for  qj ...,,�= ,  �nq ≤         (19a) 

�nnAA ×
+ℜ∈+= αα           (19b) 

�mnB ×
+ℜ∈  �npC ×

+ℜ∈  �mpD ×
+ℜ∈       (19c) 

 
where matrix αA  is given by (9a) or (11a). 
Proof. Sufficiency: If the condition (19b) is satisfied then 
by Lemma 2 nn

i
×

+ℜ∈Φ  holds for ...,,, 	��=i  If (17) and 
(19c) are satisfied then from (9) and (3b) we have 

nix +ℜ∈��  and piy +ℜ∈��  for every +∈ Zi  since nx +ℜ∈�  
and ��� miu +ℜ∈  �+∈ Zi  
Necessity: Let �=iu  for �+∈ Zi  Assuming that the sys-
tem is positive from (9) for �=i  we obtain ���� xAx α=  
and from (3b) we have ���� �

pCxy +ℜ∈=  This implies 
nnRA ×

+∈α  and npC ×
+ℜ∈  since ��

nx +ℜ∈  by definition 1 is 
arbitrary. Assuming �� =x  from (9) for �=i  we obtain 

nBux +ℜ∈= ������  and from (3b) we have 
pDuy +ℜ∈= ������  which implies mNB ×

+ℜ∈  and 
�mpD ×

+ℜ∈  since mu +ℜ∈���  by Definition 1 is arbitrary. � 
 

3.�Reachability of the positive fractional 
systems 

Let �ie  ���	�� ni �=  be the ith column of the identity 
matrix I. A column iae  for �>a  is called the monomial 
column, i.e. its one component is positive and the remain-
ing components are zero. 

Taking into account papers [3, 6, 8, 17] we may formulate 
the following definition of reachability of the positive any 
fractional-order system. 
Definition 2. The positive any fractional-order system 
(3) is called reachable if for every state n

fx +ℜ∈  there 
exists a natural number N and an input sequence 

��� miu +ℜ∈  ������	���� −= Ni  which steers the state of the 
system (3) from zero initial state (5) (i.e. �� =x ) to the 
desired final state �n

fx +ℜ∈  
Theorem 3. The positive any fractional-order system (3) 
for ��� ≤< jα  qj ������= ,  �nq ≤ is reachable in N steps if 
and only if the reachability matrix 


�������
 �� BBBR NN −ΦΦ=            (20) 
 
contains N linearly independent monomial columns. 
Proof. The solution of equation (3a) has the form (12). 
For zero initial condition �� =x  and Ni =  we have 

�
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�
��� =Φ==

−

=
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N
NjjNNf uRBuxx            (21) 

 
where the reachability matrix has the form (20) and an 
input sequence has the following form 
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From Definition 2 and (21) it follows that for every 

n
fx +ℜ∈  there exists an input sequence ��� miu +ℜ∈  

������	���� −= Ni  if and only if the matrix NR  (20) con-
tains N linearly independent monomial columns.          � 
Theorem 4. The positive non-commensurate fractional-
order system (3) for ��� << jα  qj ������= , �nq ≤  is 
reachable in N steps only if the matrix 


���� BAB α+          (23) 

 
contains N linearly independent monomial columns. 
Proof. From (18) it follows that only the matrices 

mnB ×
+ℜ∈ and mnB ×

+ℜ∈Φ� may contain linearly independ-
ent monomial columns.  
 This is due to the nature of the elements �iΦ  

����	=i (13) which build up the reachability matrix (20) 
and which exhibit the particularity of being time-varying, 
in the sense that they are composed of nonzero diagonal 
matrix �kA  �,, �	=k (9c).                                    � 
 
Remark 1. From Theorem 3 and 4 it follows that if 
a final state cannot be reached in 	=N steps, then it is 
not reachable at all. 
 If the fractional system (3) is reachable and 

nNm
NNN RRR ×

+
− ℜ∈��� 
�  then the nonnegative input vector 

(22) which steers the state of the system (3) from zero 
initial state (5) (i.e. �� =x ) to the desired final state 

n
fx +ℜ∈  is given by the formula [1, 6] 

 
�
� ���

� fNNN
N xRRRu −=             (24) 
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4.�Controllabilty of the positive 
fractional systems 

Taking into account papers [3, 6, 8, 17] we may formulate 
the following definitions of controllability of the positive 
any fractional-order system. 
Definition 3. The positive any fractional-order system 
(3) is called controllable to zero in �>N  steps if for any 
nonzero initial state Nx +ℜ∈�  there exists an input se-
quence ��� miu +ℜ∈  ,..,,., ��� −= Ni  which steers the state 
of the system from nonzero initial condition (5) to zero 
( �=fx ). 
Definition 4. The positive any fractional-order system 
(3) is called controllable in �>N  steps if for any nonzero 
initial state Nx +ℜ∈�  there exists an input sequence 

��� miu +ℜ∈  ,...,,, ��� −= Ni  which steers the state of the 
system from nonzero initial condition (5) to the desired 
final state  �N

fx +ℜ∈  
Theorem 5. The positive any fractional-order system (3) 
for ��� ≤< jα  qj ...,,�= ,  �nq ≤  is controllable to zero in 

�>N  steps if and only if  
��=Φ N        (25) 

 
Moreover �=iu  for ....,,, ��� −= Ni  
Proof. From equation (12) for �=fx  and Ni =  we 
have 

�� ��
N

NN uRx +Φ=           (26) 
 

where the matrix NR  has the form (20) and Nu�  is defined 
by (22). 
It is well known that for finite N  and �nnA ×

+ℜ∈+ α  
�nn

i
×

+ℜ∈Φ  ��
nx +ℜ∈  Nmn

NR ×
+ℜ∈  do not exist positive 

NmNu +ℜ∈�  satisfying equation (26). 
The equation (26) is satisfied for any nonzero initial con-
dition (5) and Nmn

NR ×
+ℜ∈  if and only if the condition 

(25) holds and ��� =Nu         � 
Theorem 6. The positive any fractional-order system (3) 
for  ��� ≤< jα  qj ������= ,  �nq ≤  is controllable to zero: 
a)� in �=N  step if and only if  

��=+= αα AA           (27) 
 

b)� in an infinite number of steps if and only if the system 
is asymptotically stable. 

Proof. From (18), (9a) and (9c) it follows that the condi-
tion (25) can be satisfied if and only if the condition (27) 
holds and ��=N  
In case b) if the system is asymptotically stable then  

���� � =Φ
∞→

xN
N

         (28) 

 
for every ��

Nx +ℜ∈  Moreover �→Φ N  for ∞→N  and 
��� →jkc α  Hence equation (26) is satisfied for �� =Nu  

and by Theorem 5 the system is controllable in an infinite 
number of steps.         � 
Remark 2. From formula (9b) it follows that the condi-
tion (27) can be satisfied if and only if the matrix A  (4d) 
is the diagonal matrix. 
Theorem 7. The positive any fractional-order system (3) 
for ��� ≤< jα  qj ...,,�= ,  �nq ≤ is controllable in �>N  
steps only if  

n
Nf xx +ℜ∈Φ− �           (29) 

 
and the reachability matrix NR  (20) contains N linearly 
independent monomial columns. 
Proof. From equation (12) for n

fx +ℜ∈  and Ni =  we 
have 

���
N

NNf uRxx =Φ−            (30) 

 
where the matrix NR  has the form (20) and Nu�  is defined 
by (22). 
It is well known that in the case n

Nf xx +ℜ∉Φ− �  does not 
exist positive NmNu +ℜ∈�  satisfying equation (30). 
From Definition 4 and (30) it follows that if the condition 
(29) holds there exists an input sequence ��� miu +ℜ∈  

,...,,, �	�� −= Ni  if and only if the matrix NR  (20) con-
tains N linearly independent monomial columns.          � 
Moreover, if the condition  

nNm
NNN RRR ×

+
− ℜ∈��� 
�             (31) 

 
holds then the sequence of controls ��� miu +ℜ∈  

,...,,, ��� −= Ni  that transfers the system (3) from non-
zero initial condition (5) to the desired final state 

N
fx +ℜ∈  can be computed from 

���
� �
���

� xxRRRu NfNNN
N Φ−= −        (32) 

 

5.�Example 
Test reachability and controllability of positive non-
commensurate fractional system (3) with the matrices 

�
����
������
�
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�
�
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�
−

−
=A  �

�
�
�
�

�
�
�

�
=B       (33) 

 
and ���� =α , ����	 =α  
 The system (3) with the matrices (33) is the positive 
system, since 

��
��
���� 		×

+ℜ∈�
�

�
�
�

�
=+= αα AA       (34) 

 
Using (20) for 	=N  we obtain the reachability matrix 

�
�

�
�
�

�
=Φ=

��
����


�� �	 BBR               (35) 

 
which contains two linearly independent monomial col-
umns. Therefore, by Theorem 3 the positive non-
commensurate fractional-order system is reachable in two 
steps. 
 Computing 	

�u  from (24) for the final state 
[ ]Tfx 	�=  we obtain 

�
����
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�
	

	
� �

�

�
�
�

�
=�

�

�
�
�

�
�
�

�
�
�

�
==

−
−

fxRu          (36) 

 
 We check out received result. Using (12) for matrices 
(33) with the input sequence ������� =u  and 	��� =u  we 
obtain  

�
����

�
������ �

�

�
�
�

�
== Bux          (37a) 



Pomiary Automatyka Robotyka  nr 2/2013 369

�
	
�

�������	� �
�

�
�
�

�
=+= BuxAx α  (37b) 

 
 Next, we test the controllability to zero of this system. 
From (34) it follows that the case a) of Theorem 6 is not 
satisfied. Therefore, the positive system is not controllable 
to zero in one step. 
 Using (13) for �,, 	�=i  we obtain fundamental ma-
trices iΦ  of the forms:  

�
��
����

� �
�

�
�
�

�
=+=Φ αA  

�
�

�
�
�

�
==Φ

�	���
��	���

		 A  because, �	 =αA  

�
�

�
�
�

�
=++=Φ

�������
��������	���

�		� AAAAA αα       (38) 

�

�
�������
������������

� �
�

�
�
�

�
=Φ    

 
From the above and Theorem 6 it follows that the posi-
tive system is controllable to zero in an infinite number of 
steps. 
 Next, we find the sequence of inputs that transfers this 
system from initial condition [ ]Tx ��� =   to the final 

state [ ] ��� T
fx =  

 Note that the conditions (29) of Theorem 7 are satis-
fied because the vector 

	
�	 ������

�����	
+ℜ∈�

�

�
�
�

�
=Φ− xx f       (39) 

 
is nonnegative and the reachability matrix (35) contains 
two linearly independent monomial columns. Therefore, 
the positive system is controllable in 2 steps and the se-
quence of controls ��� �

+ℜ∈iu ,, ��=i  computed from (32) 

has the form 

�
�

�
�
�

�
=Φ−= −

������
������

��
� �	
��

		
�
	

	
� xxRRRu f  (40) 

 
 To verify obtained result we find the solution of equa-
tion (3a) with matrices (33) and [ ] ����

Tx =  

��������� =u , �������� =u   
Using (12) for ���=i  we obtain, respectively 

�
������
������

�����
�
�

�
�

��
�����

������ � �
�

�
�
�

�
=⋅�

�

�
�
�

�
+�
�

�
�
�

�
�
�

�
�
�

�
=+= BuxAx α  

�
�
�

�������	� �	 �
�

�
�
�

�
=++= BuxAxAx α  

 

6.�Concluding remarks 
The concept of positive system has been extended for the 
linear discrete-time non-commensurate fractional-order 
systems�described by the state equations. Necessary and 
sufficient conditions for the positivity (Theorem 2), reach-

ability (Theorem 3) and controllability to zero (Theo-
rem 4) for orders of the fractional difference jα  satisfied 
the following conditions ��� ≤< jα  qj ..,,.�= , �nq ≤  
have been established.  
 Only sufficient conditions for controllability of such 
a system have been given. A formula for computing 
a nonnegative input Nu�  (32) which steers the state of the 
system (3) from initial state (5) to the desired final state 

N
fx +ℜ∈  has also been given.  

 The considerations can be easily extended for the 
positive 2D fractional linear systems. 
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Osiągalność i sterowalność dodatnich układów 
dyskretnych niecałkowitego rzędu 

 
Streszczenie: W pracy rozpatrzono liniowe stacjonarne dodatnie 
układy dyskretne niecałkowitego niewspółmiernego rzędu. Sfor-
mułowano definicje oraz podano warunki konieczne i wystarcza-
jące dodatniości, osiągalności i sterowalności układów dyskret-
nych niewspółmiernego rzeczywistego rzędu oraz współmierne-
go niecałkowitego rzędu. Rozważania zilustrowano przykładem 
numerycznym. 

Słowa kluczowe: niecałkowity niewspółmierny rząd, układ 
dyskretny, standardowy, dodatni, osiągalność, sterowalność 
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