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Abstract: In the paper the problem of stability of fractional discrete-
time linear scalar systems with state space pure delay is considered.
Using the classical D-decomposition method, the necessary and
sufficient condition for practical stability as well as the sufficient
condition for asymptotic stability are given.
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1. Introduction
In recent years considerable attention has been paid to
fractional calculus and its application in many areas of
science and engineering such as: control systems, electri-
cal engineering, mechanics, chemistry, biology, signal and
image processing. Fractional differentiation is used in mo-
delling many physical phenomena, where similar modelling
with the traditional (integer) differentiation either fails or
provides poor results. A variety of fractional models can be
found in various fields such as diffusion, fluid flow, turbulen-
ce, viscoelasticity, electric networks, polymer physics and
propagation of seismic waves. State of the art of fractional
systems and the application of fractional differentiation ha-
ve been presented in monographs (e.g., [1, 11–14, 16, 17,
20, 21]) and papers (e.g., [5, 7, 22]).

The fundamental matter in the dynamic systems theory
is the stability problem. In case of the linear continuous-
time fractional systems this problem has been considered
in many publications (e.g., [2, 11, 12, 15, 18]). On the
other hand, a stability problem of the linear discrete-time
fractional systems is more complicated and less advanced.
It results from the fact that the asymptotic stability of
such systems corresponds to the asymptotic stability of
the associated infinite dimensional discrete-time systems
with delays. In practice the number of delays is limited
by the so-called length of practical implementation and
the discrete-time system with finite number of delays is
obtained. Its asymptotic stability is the so-called practical
stability of the fractional discrete-time system. The problem
of practical stability of fractional discrete-time systems has
been considered in [3, 4, 10, 11, 12] for positive systems
and in [3, 6, 7, 9] for standard systems (non-positive).

Main purpose of this paper is to establish new stability
conditions for the fractional discrete-time linear scalar sys-
tem with pure delay. The practical stability and asymptotic
stability will be analysed. New necessary and sufficient con-
dition for practical stability and the sufficient condition for
asymptotic stability will be proposed.

2. Problem formulation
Consider the fractional discrete-time linear scalar systems
with state space pure delay, described by the homogeneous
equation

Δαxi+1 = a1xi−1, α ∈ (0, 1), i ∈ Z+ (1)

with the initial condition x−l (l = 0, 1), where xi ∈ � is
the state vector and a1 is the scalar.

In this paper the following definition of the fractional
difference [10–12] will be used

Δαxi =
i∑

k=0

(−1)k

(
α

k

)
xi−k, (2)

where α ∈ � is the order of the fractional difference, and
(

α

k

)
= α!

k!(α − k)!
. (3)

Using definition (2), after transformation, equation (1)
can be written in the form

xi+1 = αxi + a1xi−1 +
i∑

k=1

ck(α)xi−k, (4)

where

ck(α) = (−1)k

(
α

k + 1

)
, k = 1, 2, . . . (5)

The coefficients (5) can be easily calculated using the
following formula [4]

ck+1(α) = ck(α)k + 1 − α

k + 2
, k = 1, 2, . . . (6)

with c1(α) = 0.5α(1 − α).
Note that equation (4) represents a linear discrete-time

system with a growing number of delays in state.
From (6) it follows that the coefficients ck(α) are positive

for α ∈ (0, 1) and decrease rapidly with an increase of k.
Therefore, we can assume that the value of k in equation
(4) may be limited by some natural number L. This number
is called the length of the practical implementation [10]. In
this case equation (4) can be written in the form

xi+1 = αxi + a1xi−1 +
L∑

k=1

ck(α)xi−k, i ∈ Z+. (7)



Pomiary Automatyka Robotyka  nr 2/2013 341

Equation (7) represents a linear discrete-time system
with L delays in state. Moreover, the system (7) is called
the practical realization of fractional system (1).

The definition of practical stability and the related de-
finition of asymptotic stability for fractional discrete-time
systems have been introduced in the work [10]. With re-
gard to the system (1) these definitions take the following
forms.
Definition 1. The fractional system (1) is called practically
stable if the system (7) is asymptotically stable.
Definition 2. The fractional system (1) is called asymp-
totically stable if the system (7) is practically stable for
L → ∞.

Using the stability theory of discrete-time linear systems
and Definition 1 we obtain the following theorem.
Theorem 1. The fractional system (1) with given length L

of practical implementation is practically stable if and only
if

w(z) �= 0, |z| � 1, (8)

where

w(z) = z − α − a1z−1 −
L∑

k=1

ck(α)z−k (9)

is the characteristic polynomial of the system (7).
The characteristic equation w(z) = 0 of the system (7)

can be written as

zL+1 − αzL − a1zL−1 −
L∑

k=1

ck(α)zL−k = 0. (10)

Well-known methods for testing the asymptotic stability
of discrete-time systems can be used to study the practical
stability of the fractional system (1) (asymptotic stability
of system (7)). This is not an easy task in the case of high
degree of equation (10), which depends on the length L of
practical implementation.

The main aim of this paper is to give new necessary
and sufficient condition for practical stability and new
necessary condition for asymptotic stability of the system
(1), which do not require direct checking of condition (8).
The proposed stability conditions do not require a priori
knowledge of the characteristic polynomial (9).

3. Solution of the problem
In the asymptotic stability analysis of fractional discrete-
time system (1) we consider, without reducing generality
of considerations, the system described by the equation

Δαxi+1 = (a1 + jb)xi−1, j2 = −1, α ∈ (0, 1), (11)

where a1 and b are real numbers.
For the system (11) equation (7) takes the form

xi+1 = αxi + (a1 + jb)xi−1 +
L∑

k=1

ck(α)xi−k. (12)

The characteristic polynomial of the system (12) is the
polynomial with complex coefficients of the form

w̃(z) = z − α − (a1 + jb)z−1 −
L∑

k=1

ck(α)z−k. (13)

The D-decomposition method [8, 18, 19] will be applied
for analysis of stability of the system (12) in connection
with values of the parameters a1 and b. Using this method,
the stability region in the parameter plane (a1, b) may
be determined and the parameters can be specified. The
plane (a1, b) is decomposed by the so-called boundaries of
D-decomposition into finite number of regions D(q). The
polynomial (13) for any point in the region D(q) has q zeros
which satisfy the condition |z| > 1. The stability region of
polynomial (13) is the region denoted as D(0). For any point
in the D-decomposition boundaries the polynomial (13) has
at least one zero on the unit circle in the complex z-plane.
Those zeros may be real or complex, thus, we have the real
zero boundary or the complex zero boundary. Any point in
the real zero boundary corresponds to such values of a1 and
b for which the polynomial (13) has zeros z = 1 or z = −1,
while any point in the complex zero boundary corresponds
to such values of a1 and b for which the polynomial (13)
has complex zeros satisfying the condition |z| = 1.

Firstly, the real zero boundary will be obtained. For
z = 1 and z = −1 from the equation w̃(z) = 0 after
transformation we get, respectively,

a1 + jb = 1 − α −
L∑

k=1

ck(α), (14)

a1 + jb = 1 + α +
L∑

k=1

ck(α)(−1)−k. (15)

Hence, in the plane (a1, b) the real zero boundaries are two
points: the point corresponding to z = 1 with coordinates

a1 = 1 − α −
L∑

k=1

ck(α), b = 0, (16)

and the point corresponding to z = −1 with coordinates

a1 = 1 + α +
L∑

k=1

ck(α)(−1)−k, b = 0. (17)

Now, the complex zero boundary will be determined by
solving the following complex equation with respect to
a1 and b

w̃(exp(jω)) = exp(jω) − α − (a1 + jb) exp(−jω)

−
L∑

k=1
ck(α) exp(−jωk) = 0.

(18)

This equation is obtained after introducing substitution
z = exp(jω), ω ∈ [0, 2π] (boundary of the unit circle in
the complex z-plane) in the polynomial (13) and equating
to 0. Finally, by solving equation (18) we get

a1(ω) = 2 cos(ω)2 − 1 − α cos(ω)

− sin(ω)
L∑

k=1
ck(α) sin(ωk)

− cos(ω)
L∑

k=1
ck(α) cos(ωk),

(19)

b(ω) = 2 cos(ω) sin(ω) − α sin(ω)

− sin(ω)
L∑

k=1
ck(α) cos(ωk)

+ cos(ω)
L∑

k=1
ck(α) sin(ωk).

(20)
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Fig. 1. The practical stability region D(0) of system (11) for α = 0.5
and L = 5

Rys. 1. Obszar stabilności praktycznej D(0) układu (11) dla α = 0,5
i L = 5

Equations (19) and (20) describe the complex zero
boundary in plane (a1, b). Note that from these equations
for ω = 0 and ω = π we obtain formulas (16) and (17),
respectively.

The practical stability region of the system (11), that is,
the asymptotic stability region of the system (12) for a given
L, for the example values α = 0.5 and L = 5, is shown in
fig. 1. The complex zero boundary obtained for ω ∈ [0, 2π]
divides the plane (a1, b) into two bounded regions and one
unbounded. The real zero boundary is denoted by x-marks
in fig. 1. The asymptotic stability region D(0) of system (12)
is chosen by testing an arbitrary point from each region and
checking the asymptotic stability of the polynomial (13). For
example, choosing the point with coordinates a1 = −0.5
and b = 0 we obtain the following zeros of polynomial
(13): z1 = −0.367, z2 = 0.622, z3,4 = −0.121 ± j0.421,
z5,6 = 0.243 ± j0.639. For all these zeros the condition
|z| < 1 is satisfied, thus the region with this point is
the stability region D(0). Hence, in the plane (a1, b), the
practical stability region of the system (11) is the region
bounded by the closed curve a1(ω) + jb(ω), where a1(ω)
and b(ω) are calculated from (19) and (20).

Fig. 2 shows the practical stability regions of the system
(11) with α = 0.5 and different values of L, while fig. 3
shows the practical stability regions with L = 1000 and
different values of α. It is easy to check that for α = 0 we
obtain the unit disc.

The state equation of system (1) may be obtained after
setting b = 0 in (11). Therefore, for the fractional system
(1) the practical stability region D(0), shown in fig. 1,
reduces to an interval of the real axis. The lower and upper
endpoints of this interval will be denoted by a1 min and
a1 max. The upper endpoint a1 max corresponds to the real
zero boundary (16), and its value can be calculated from
the following formula

a1 max(α, L) = 1 − α −
L∑

k=1

ck(α). (21)

The lower endpoint a1 min corresponds to the self-
intersection point of the complex zero boundary, and its
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Fig. 2. The practical stability regions D(0) of system (11) for α = 0.5
and L = 5 (boundary 1), L = 10 (boundary 2), L = 1000
(boundary 3)

Rys. 2. Obszary stabilności praktycznej D(0) układu (11) dla α = 0,5
oraz L = 5 (krzywa 1), L = 10 (krzywa 2), L = 1000
(krzywa 3)
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Fig. 3. The practical stability regions D(0) of system (11) for
L = 1000 and α = 0.2 (boundary 1), α = 0.8 (boun-
dary 2)

Rys. 3. Obszary stabilności praktycznej D(0) układu (11) dla
L = 1000 oraz α = 0,2 (krzywa 1), α = 0,8 (krzywa 2)

value can be calculated using equations (19) and (20) ac-
cording to the following procedure.

Step 1. Assuming b = 0 in the equation (20) compute
ω = ωp ∈ (0, π).

Step 2. In equation (19) substitute ωp and compute

a1 min(α, L) = a1(ωp). (22)

The values of a1 min and a1 max depend on the given
order α ∈ (0, 1) and the given length L of practical
implementation. Fig. 2 shows that the practical stability
region of the system (1) (interval of the real axis) becomes
smaller for greater values of L.

On the basis of the conducted considerations the follo-
wing theorem can be formulated.
Theorem 2. The fractional system (1) with the given length
L of practical implementation is practically stable if and
only if

a1 min(α, L) < a1 < a1 max(α, L), (23)
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where a1 min(α, L) and a1 max(α, L) are computed from the
formulas (22) and (21).

Graphs of a1 min(α, L) and a1 max(α, L), given by for-
mulas (22) and (21), as functions of the fractional order
α ∈ (0, 1) for small L = 10 and large L = 1000 values of
the length L of practical implementation, are shown in
fig. 4. The practical stability region of the system (1) in
the plane (α, a1) lies between the graphs a1 min(α, L) and
a1 max(α, L). This region for a given L determines values
of a1, for which the system (1) is practically stable with
a given α ∈ (0, 1).
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Fig. 4. The practical stability regions of system (1) in the parameter
plane (α, a1) for L = 10 (boundaries 1) and L = 1000
(boundaries 2)

Rys. 4. Obszary praktycznej stabilności układu (1) na płaszczyźnie
(α, a1) dla L = 10 (krzywe 1), L = 1000 (krzywe 2)

Fig. 4 shows that, for a fixed α ∈ (0, 1), values of
a1 min(α, L) differ slightly for small and large values of L,
whereas values of a1 max(α, L) differ significantly for small
and large values of L.

Now we consider the problem of asymptotic stability.
To establish conditions for asymptotic stability of the

system (1), the conditions (23) for L → ∞ will be conside-
red.

Using the formula [5, 10, 11]

∞∑
k=1

ck(α) = 1 − α, α ∈ (0, 1), (24)

from (21) for L → ∞ we obtain

lim
L→∞

a1 max(α, L) = 0. (25)

It is easy to check that the self-intersection point of the
complex zero boundaries for all α ∈ (0, 1) and L → ∞ lies
to the left of point a1 = −1 (see fig. 2 and fig. 3).

From the above we obtain the sufficient condition for
asymptotic stability of the fractional discrete-time linear
scalar system (1) with pure delay.
Lemma 1. If

−1 < a1 < 0 (26)

the fractional system (1) is asymptotically stable.
Example. Consider the fractional system (1) with α = 0.2.
Find values of coefficient a1 for which the system is practi-
cally stable for L = 10 and L = 1000.

Using Theorem 2 and fig. 4 we find out that the
system (1) with α = 0.2 is practically stable for a1 ∈
(−1.069, 0.528) if L = 10 and for a1 ∈ (−1.063, 0.216) if
L = 1000. In this case the system (1) with α = 0.2 and
a1 = 0.5 is practically stable for L = 10, but it is not
practically stable for L = 1000.

4. Concluding remarks
The problem of practical stability and asymptotic stability
of discrete-time linear scalar system (1) of fractional order
α ∈ (0, 1) with pure delay is analysed. Using the classical
D-decomposition method new necessary and sufficient
conditions for practical stability (Theorem 2) and new
sufficient condition for asymptotic stability (Lemma 1) are
established.

The work can be extended for a class of systems descri-
bed by the equation Δαxi+1 = A1xi−1 with diagonal state
space matrix A1.
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Warunki stabilności skalarnych układów
dyskretnych niecałkowitego rzędu z czystym

opóźnieniem
Streszczenie: W pracy rozpatrzono problem stabilności liniowych
skalarnych układów dyskretnych niecałkowitego rzędu z czystym
opóźnieniem zmiennych stanu. Wykorzystując metodę podziału D
podano warunek konieczny i wystarczający praktycznej stabilności
oraz warunek wystarczający stabilności asymptotycznej.

Słowa kluczowe: stabilność asymptotyczna, stabilność praktyczna,
niecałkowity rząd, liniowy układ dyskretny
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