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Abstract: The positive minimal realization problem for

(SISO)
systems is formulated. Two special case of the continuous-

continuous-discrete linear single-input, single-output
discrete systems are analyzed. Method based on the state
variable diagram for finding positive minimal realizations of given
proper transfer functions is proposed. Sufficient conditions for the
existence of positive minimal realizations of given proper transfer
functions with separable numerator or transfer functions with
separable denominator are established. Two procedures for
computation of positive minimal realizations are proposed and

illustrated by numerical examples.
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In positive systems inputs, state variables and outputs
take only non-negative values. Examples of positive
systems are: industrial processes involving chemical
reactors, heat exchangers and distillation columns, storage
systems, compartmental systems, water and atmospheric
pollution models. A variety of models having positive
linear systems behavior can be found in engineering,
management science, economics, social sciences, biology
and medicine, etc. Positive linear systems are defined on
cones and not on linear spaces. Therefore, the theory of
positive systems is more complicated and less advanced.
An overview of state of the art in positive systems theory
is given in the monographs [1, 2]. The realization problem
for positive discrete-time and continuous-time systems
without and with delays was considered in [3-7].
Continuous-discrete 2D linear system is a dynamic
that both

discrete-time dynamics. It means that state, input and

system incorporates continuous-time and
output vectors of 2D system depend on continuous and
discrete variables. Examples of continuous-discrete systems
include systems with relays, switches, and hysteresis,
transmissions, and other motion controllers, constrained
robotic systems, automated highway systems, flight control
and management systems, analog/digital circuit. Wide
variety of not only 2D system examples can be found e.g.

in book [8]. The positive continuous-discrete 2D linear

systems have been introduced in [9], positive hybrid linear
systems in [10] and the positive fractional 2D hybrid
systems in [11]. Different methods of solvability of 2D
hybrid linear systems have been discussed in [12] and the
solution to singular 2D hybrids linear systems has been
derived in [13]. The realization problem for positive 2D
hybrid systems have been addressed in [2, 14-16] and the
minimal realization problem for the transfer function with
separable denominators and the transfer function with
separable numerators of 2D systems has been addressed in
[17, 18].

Positive minimal realization problem for 1D systems is
well-known [2]. The same problem for 2D continuous-
discrete systems is much more complicated and there is
only a few publications concerning positive minimal
realizations. The presented paper is focused on extending
the state diagram method [2, 17], previously used to solve
positive realization problem (non-minimal) [13, 19], on
minimal realizations. In this paper it will be shown that
the state variable diagram method can be used to compute
the positive minimal realizations for special case of 2D
transfer function — proper transfer functions with separable
denominators or separable numerators. Also, the sufficient
conditions for the existence of positive minimal realizations
of the given proper transfer functions will be established,
and procedures for computation of positive minimal
realizations for the two cases of transfer functions will be
proposed.

The paper is divided in 3 sections. In section 1 some
preliminaries concerning the positive continuous-discrete
2D linear systems and minimal realization are recalled and
the positive minimal realization problem is formulated.
Two special cases of continuous-discrete systems are
analyzed in section 2. In the same section the solution to
the positive minimal realization problem for two cases of
transfer functions are presented and the sufficient
conditions for existence of positive minimal realization are
established. Concluding remarks are given in section 3.

In the paper the following notation will be used: the set
R and
set of nxm real matrices with
will be denoted by RPand

M, be the set of mxm Metzler matrices

of nxm real matrices will be denoted by
R" =R, The
nonnegative entries

X1
R = R
(real matrices with nonnegative off-diagonal entries). The
nXn identity matrix will be denoted by I, and the
transpose will be denoted by 7.

Pomiary Automatyka Robotyka nr 2/2013

333



NAUKA

1. Preliminaries and problem formulation

Consider a continuous-discrete linear system described by
the equations [2]:

Ty (t,7) =Ag 71 (49) + Ajpwa (L,9) + Byu(t,i)

(1a)

To(t,i+1) =Agy w9 (t,0) + Aggo (1,7) + Bou(t, 1), (1b)

y(t,i) =C'yxq (t,0) + Coxy(t,7) + Du(t,i) , (1c)

_ aml (t, Z)

() =
‘Tl( 72) ot ’
zi(ti)e R™ | zy(t,i)e R™ | u(t,i)e R™, y(t,i)e R? and

T XN Moy XN, Ty X1
A12€9K1 27 A21€932 17 AQQE%Q 27

where te R, =[0,4+], ieZ,,

A e M, ,

2 2 X X XN
Ble iKnlxm7 32 EEKn2 nL, Cl E%p nl, 02 G%p nz,

xm .
De RP are real matrices.

Boundary conditions for (1a) and (1b) have the form:

21(0,i) =2, (7)), i€ Z, and z5(t,0) =z5(t), te R, . (2)
Note that the continuous-discrete linear system (1) has
a similar structure as the Roesser model [10, 20].

Definition 1. The continuous-discrete linear system
(1) is called internally positive if z(t,i)e R},
zo(t,i)e Ry2, and y(t,i)e R, te R,, ie Z, for all
arbitrary boundary conditions z;(i)e R}, ie Z,,
zo(t)e R, te R, and all inputs u(t,i)e R}, te R,
ieZ,.

Theorem 1. [2, 10] The continuous-discrete linear
system (1) is internally positive if and only if:

XN o9 X o X1
All e M A12 e%zl 7’L27 A21€EKZZ Tl17 A22 69{}) n27

nyo
B, e %ZIX77L7 B, e SKZQX7IL7 C € EKfX"l, Oy e g{ﬁxng’
De Ry,

3)

The transfer matrix of the system (1) is given by the
formula:

I’nls - All
- AQI

_A12
ITIQZ - A22

1
} {Bl} +D e RP"(s,2)
By

(4)

T(s,2) = [01 02][

where N7 (s,z) is the set of pXm real matrices in s
and z with real coefficient. For the m-inputs and p-outputs
continuous-discrete linear system (1), the proper transfer
matrix has the following form:

Ty1(s,2)

Tlm (S,Z)

T(s,2) = € R (s,2)  (5a)

Tpi(s,2) oo Tpp(s,2)
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where:
Tk Mk
Kl i ]
B » YA
18,2 i=0 j=0
Tiy(s,2) = (5b)
kl S,Z)
Tk Mok
RUVCY zz allpljsizj
i=0 j=0

z'+j:ﬁnlyk, +Ny 1

fork =12,...,p; 1 =12,...,m where U(s, 2) = z{cu(t, )]},
Y(s,z) = Z{c[y(t,7)]} and Z and £ are the Z-transform and
Laplace operators.

Multiplying the numerator and denominator of transfer
matrix (5b) by s "z
the state space form, eg. form which is desired to draw the

we obtain the transfer matrix in

state space diagram [9, 15, 20]:

Tk T2k
z Z b;fljs_iz_j
Ty(s™ 27! = —— =2 (6)
Tk T2k
1- z z aﬁljs_iz_~7
i=0 j=0

T j#EN g+

for k=12,....,p; 1=12,....m .
Definition 2. The matrices (3) are called the positive
realization of the transfer matrix T(s,z) if they satisfy the

equality (4). The realization is minimal if the matrix

A Ap . . .
A= has the lowest possible dimension among
A21 A?Q

all realizations. The positive minimal realization problem
can be stated as follows: given a proper rational matrix
T(s,z) € RP*™(s,2), find

realization (3).

its positive and minimal

Remark 1. For 1D systems the minimal realization is
the one with the matrix A of dimension nXn where n is
the degree of the characteristic polynomial of the system
[9]. This
observability of the 1D system. For 2D system in general

was implicated by controllability and
case this relationship is not true [19] and the observability
and controllability of the 2D system does not implicate the
minimality of its realization.

Remark 2. The minimal realization for 2D system is
the with  the of

(ny + n9)X(ny + ny) where n; and n, are the degrees of

one matrix A dimension

the characteristic polynomial in s and z of the system [19].

2. Problem solution for SISO systems

The solution to the minimal positive realization problem
will be presented on two special cases of the 2D transfer
functions. Proposed method will be based on the state
variable diagram [2, 17, 15].

Two cases of the transfer functions of continuous-
discrete linear system will be considered.



Case 1. The transfer function with separable
denominators:
L)
i=0 j= y(s',z7!
T(Sil,zil)z i=0 j=0 (8 ) )(7)
-1 -1
(s7,27)

n Ny - U
l—zﬂks_k 1-2&12_1
k=1 =1

Case 2. The transfer function with separable numerators:

’n,1 n2
2B DA
i=0 j=0 Y -1 ,-

1
- -1 (S ) )
T(s™ 27 = — T (8)
s L,z
B AN
k=01=0
k+1#0
2.1.Case 1
Defining:
-1 -1
E(Sil,zil) U(S 2 ) ,

= 1 2 .
1=pis™ =fos™" —..=Bys ™
(boo + o1zt +bygs ™+ bpymy s 12 VE(s™H27h)

Y(s™t 2"
P e Ay, 2

1):

(9)
from (9) and (7) we obtain:

Bs™ 2 ) =Us e )+ (Bis ™ + Bos D+t B s EST 2T,
- — -1 -1
S "2 )BT 27

(M2 A A, (s T,

Y(S_lvz_l) = (boo + b()lZ_l + blOS_l +...+b

(10)
Using (10) we may draw the state variable diagram
shown in fig. 1.

|
i
St
[
o s e

s b e

e

Fig. 1. State variable diagram for transfer function (7) with
separable denominators

Rys. 1. Schemat zmiennych stanu dla transmitancji (7)
z separowanym mianownikiem

As state variables we choose the outputs of integrators
(z11(t9), @12(t0), - 7y (44)) and of delay elements
(z91(t,7), z92(t4), ..., T, (t4)). Using the state
variable diagram (fig.1) we can write the following
differential and difference equations:

il,l (tvi) = eft, i):
?1,2 (t9) = T11 (t.4), (11a)

1, (6,1) = 215, 1 (4,1),

Ty (b7 +1) = bore(t, ) + byy 211 (t,7) + by 1 2 (¢,9)

+ot by 17y, (89) + 290 (t,4) + A y(E ),

Ty g, 1 (61 +1) = by, 1€(t,0) + by, 1211 (,7) + by, 1212 (8,9)
t..t bnl,nz —1331,71,l (tv Z) + $2,7L2 (t7 Z) + inz —ly(tv i)v
'1.2,712 (tv i+ 1) = bO,nz e(tv Z) + bl,n2 11 (tv Z) + bQ,n2 1,2 (t: Z)

+ot by 0, T, (t, 1)+ /1n2 y(t,7)

where:

y(t,9) = bogelt, 9) + by 1 (£,9) + bagz 2 (2,9)
+...+ bn’l 701.1-,”] (t, Z) + 12’1 (t, Z),

€(t, Z) = ﬁlel (t, Z) + ﬂQCELQ (t, l) +...+ ﬁ"l Q?Lnl (t, Z) + 'Lt(t7 Z) .

(11b)

Substituting (11b) into (11a) we obtain:

a1 (t,1) = Bragg (84) + Powyp(9) + oot By w15, (1) +ult, 1),

Ty 9(t,4) = w1, (L,19),

il,nl (t,i) = T1,m, ~1 (t,1),
Top (b, +1) = b2y (£,1) + by1219(89) + .o + by, 121, (2:9)

+ Ao (8,79) + w99 (,7) + (boy + Aiboo Jult,0),

1827%,1(15,2' + 1) = bl,n2 -1%11 (t’ Z) + b?,n271x1,2 (tvi) +ot bnl,mflxl,n1 (t’ Z)

+ A, 101 (£:9) + 90 (£,9) + (g, -1 + A, 1000 Jult: 9),
Ty, (t0+1) = by, @13 (,3) + by, 219 (8,3) + ...+ D,
+ A, T2 (t,1) + (bo,n, + A, boo Jults ),
y(t,1) = (byg + Prbog )11 (t,7) + (bag + Babgo )12 (t:4)
+..+ (bn1 ot ﬂnl bgg ):1c11nl (t,7)+ T91 (t,7) + bygult,7)

t,4)

Ny, 7y Z1, i (

(12a)
where _
by = by + Brboy + Abro + BrAboo (12b)
for k=12,...,n; 1 =12,...,n9.
Defining state vectors in the form:
21 (t,9) T91(t,7)
zl(tvi) = : ) $2(t,i) = (13)
T1,m, (tv Z) L2 n, (tvi)
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we can write the equations (12) in the form: Using Procedure 1 we obtain the following:
Step 1. Using transfer function (16a) we can write:
ai(td) | [An A ||z(td)| | B ) (14)
. - N u(t,z), -1 —2
l’z(tﬂ + 1) A21 A22 ) (t7’l) BQ E= U+(25 +3s )E,
a1 (t,9) Y =(06+052"+04s +0.352 40252 + 0152 E+ 427y,
yti) =00 Co] T+ Dulti)
zo(1,1) (17)
where: Step 2. State variable diagram has the form shown
in fig.2.
7ﬂ1 ﬂZ ﬁnl—l ﬂnl (15)
1 0 0 0 0 ..0
A, =0 1 0 0 [eR™™, Ay=|i .. ileRw",
ool : 0 ..0
000 .. 1 0
A 0
by by b 00 ..0
A21 — e SR?LZ><7117 AQQ — ° .. c 9tnz><n27
(;l Ty 5nl ny j’f =1 0
A, 0
1
0 bor + Aitno
_ 7y X1 _ : 715 X1
Bi=| . |e %", By= ’ € F* Fig. 2. State space diagram for transfer function (16) for: 4; =4,

0 b, + Ao, oo Bi=2, By=3, by =06, by =0.5, by =04,
by =0.3 byy =0.2, by; =0.1

Rys. 2. Schemat zmiennych stanu dla transmitancji (16), przy

D= [tyy] e R*. czym: Ay =4, B =2, fy =3, byyg =0.6, by =0.5,

by =04, by =0.3, byy =0.2, by; =0.1

Cr=[bo+ Ao - bn,,0+ﬁn,lho}€9‘lxnl» Cy=[ 0 ... 0)eR™™,

Therefore, the consequent theorem has been proved.

Theorem 2. There exists positive realization of

dimension (n; +ny)x (n; +ny) of transfer function (7) if Step 3. Using state variable diagram we can write the

it has separable denominator with nonnegative coefficients following equations:

A, By for k=12..,n1; 1 =12..ny and arbitrary

nonnegative numerator coefficients bi ; for j;m (t,7) = e(t,9),
i=01..ny, j=01..ny. d19(t,3) = 21 (t,9),
If the assumptions of Theorem 2 are satisfied, then positive 2y (1, +1) = 0.5e(t, 1) + 0.3z, 1 (1,1)

realization (3) of (7) can be found by the use of the

+0.12 o(8,7) +4y(t, 7
following procedure: 0.1z o(t,7) + 4y(t,7)

(18a)
Procedure 1. and
Step 1. Using the transfer function (7) write (10). y(t,3) = 0.6e(t, i) + 0.4z 1 (t,9)
Step 2. Using (10) draw the state variable diagram shown +0.23 5(t,7) + 29 (£, 1),
in Fig.1. . ' . . .
e(t, i) = 2xy1(t,7) + 3wy o(,2) + u(t, 7).
Step 3. Choose as the state variables the outputs of (t,1) 1at9) 12(b9) +ult, ) (18b)
18b

integrators and of delay elements and write
equations (12). Substituting (18b) into (18a) we have:
Step 4. Using (12) find the desired realization (15).

Example 1. Find positive realization (3) of the

continuous-discrete system with proper transfer function: y4(t,1) = 22142, i)+ 3331,2(t7i) +u(t,i),

3

19(t,7) = @11(8, ),
_0.6+0.527" +0.45 +0.3572 7 +0.2572 +0.157%2 7!

T(s,27h T T 3 @ (10 +1) = 7.7y (£,7) + 962 o(1,1) + g1 (1,1) + 2.9u(t, 1),
y(t, 7/) = 1.61'171 (t, l) + 21‘172 (t,Z) + (L'271 (t,Z) + 06U(t, ’L)
(16a) ) o (19)
In this case m; =2, my =1 and transfer function has Step 4. The desired realization of (16) has the form:
separable denominator, since: 2 3 0
Ay = Ay = Ay =[7.7 9.6] Ay =[4]
1= of 42T g 2 22 )
dis™h ) =147 — 257 87T - 357 412572 .
=(1-2s1=3s)(1-427) By = M, By =[29], ¢, =[1.6 2], Cy =[1], D=10.6].
(16b) (20)
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Obtained realization has only nonnegative entries and its
dimension is minimal.

2.2.Case 2
Defining:
-1 -2 —n, -1 -1
B2 = (Ao + 427 + Agz™" ot Ay 272 )U(s,27)
1—agz b —aggs ™ - — I
(21)

from (8) and (21) we obtain:

B(s™h 2T = (g + AT + Az 4k A 2T UGs T 2T
anl.nQS_an_n? )E(5_17Z_1)¢

Y(s™ 2T ) = (By+ Bis™ + Bos P+t B s BT 27T,

+(agrz  Faggs T+

(22)

Using (22) we may draw the state variable diagram
shown in fig. 3.

Fig. 3. State space diagram for transfer function (8) with
separable numerators
Fig. 3. Schemat zmiennych stanu dla transmitancji (8) z

separowanym licznikiem

Similarly as in section 2.1 as state variables we choose
the outputs of integrators (z1;(,4), ... 21, (7)) and of
delay (z91(t4), wos gy, (t4)). Using state
variable diagram (fig. 3) we can write the following
differential and difference equations:

elements

(1) = ety ), (25a)
1 9(t, 1) = 214 (¢, 1),

‘il,nl (tvi) = xl,nl—l(tvi)a

T 1 (2,0 +1) = agre(t,d) + ayq1 1 (2,0) + a9y 2 9(¢,7)

+ ...+ anl’lenl (t, Z) + 1'2_]2(t,2’) + llu(t7 Z)

To -1 (L0 + 1) = ag p, 1e(t,9) + ayy, 1211 (87) + ag 121 2(8,9)
tot Oy g, 11, (80) + T, (8,49) + Ay, qult, i),

T, (t,i+1) = ao’me(t, i)+ alynle,l(t,i) +ag,, 2y 9(t,7)

+ A, u(t, i),

Ny

y(t,49) = Poe(t,i) + Pizy 1 (8. 0) + Somy o(t,48) + .. + By 1y, (£,9)

+otay T, (t,7)

where:

e(t,l) = amxl,l(t, Z) + 0/201'1’2(t7 Z) +...+ Gnl_’()xl_’nl (t, Z)
+ $2’1 (t, 'L) + ﬂou(t, Z)

(23b)
Substituting (23b) into (23a) we obtain:

y1(4,7) = oz, (8 9) + a2 2(5: 1) + .. + @y 021y, (E,9)
+ 9, (t,9) + Agult, 9),

y9(t,7) = 214(8,9),

jjl,nl (tv 7) = Tip, 71(ta 7:)’
T (L0 +1) = (ayy + aygag )1 (L, 9) + (ag) + aggagr )22t 1) + ...
+(ay, 1 + ay 0001)T1, (£9) + agu@g 1 (£9) + 299(47) + (A4 + agidp)ult, 3),

Ty -1t +1) = (a1 + 10895, 1)1 (¢, 9) + (a2, -1 + G208 17122 7)

F et (@ py—1 T @y 000,y —1)T1n, (8 9) + g, 1T 1 (E,7) + T (2, 7)

+ (Auy -1 + a9, 140 Jult ),
Ty, (t7+1) = (ay,, + aj08g,p,)711(87) + (a2, + a2000,, )1 2(t, 1)

ot (@, + 000,71, (87) + ag 5, @01(89) + (An, + ag , Ao)ut, 7),
y(t,7) = (By + aroBy)r11(t,0) + (Ba + ago o)y o(t, 0) + ...

+ (B, + an 080)T1n, (,9) + Boza1(E,0) + A Byult, d).

(24)

Defining state vectors in the form (13) we can write the
equations (24) in the matrix form (14) where:

ayp G Ap,-1,0  Ony0
1 0 .. 0 0
A= 0 1 .. 0 0 |e RMm*m,
0 0 1 0
[1 0 ... 0
0
A12 = . S %nlxn27
00 ..0
(25)
ayy + ajpap; ap, 1t Gy 0001
A21 = : : (S g{nzxnl,
_al,nz + a10a0,n, Gy ny + Gy 020, 1,
i apy 10
) 00
A22 — . P c EK"’ZX%’
ao‘nz_l 00
L aom? 00
0 Ay + agi g
B1 — c 9{"’1X17 32 — : c 9{7]@(17
0 ﬂ'nz + aO,nQﬂO

Cl = [ﬂl + algﬁo ﬁnl + a”l.oﬁo} e 9{1X7L17
CZ = [ﬂ() 0 0] c g{lxnz,
D =[Afy)e R
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Therefore, the consequent theorem has been proved.
Theorem 3. There exists a positive realization of

dimension (nq + ny) X (ny + ny) of transfer function (8) if

it has separable numerator with nonnegative coefficients

Ais B for i=01..,n;, j=0]l..,ny, and arbitrary
nonnegative  denominator  coefficients ay for
k=01..,n, [=0l..ny and k+1#0.

If the assumptions of Theorem 3 are satisfied, then positive
realization (3) of (8) can be found by the use of the
following procedure:

Procedure 2.
Step 1.
Step 2.

Using the transfer function (8) write (22).

Using (22) draw the state variable diagram shown
in fig. 3.

Step 3. Choose as the state variables the outputs of
integrators and of delay elements and write
equations (24).

Using (24) find the desired realization (25).

(3) of the

continuous-discrete system with proper transfer function:

Step 4.

Example 2. Find positive realization

11 3+4z7 465 +857 2 45272 410571272
T2 )= | 1 11 2 1,2
1-0.52 =04s =0.3s 2z =022z 7 =0.1s 'z

(26a)
In this case n; =1, n, =2 and transfer function has
separable numerator, since:

e =344z 4657 4857 45272 4105727
(26Db)

=(1+2s B +4271 +5272).

n(s

Using Procedure 2 we obtain the following:
Step 1. Using the transfer function (26) we can write:

E=0B+4z" +5:2)U + (0527 +0.4s7"
+0.3s 27 402572 +0.1s7227HE,
Y =(1+2sHE.

Step 2. State variable diagram has the form shown

(27)

in fig.4.

-

e

Oe <;’}- -

Fig. 4. State space diagram for transfer function (26) for 4, =3,
=4, A=5, By=1, p=2,
ayg =04, a7 =03, app =0.2, a5 =0.1

agp = 0.5 B

Rys. 4. Schemat zmiennych stanu dla transmitancji (26), przy

czym: /10:3, 11:4, 2«2:5, ﬂozl, ﬁ1:2,
ap; =0.5, ag =04, ay; =03, agy = 0.2,
a19 =0.1
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Step 3. Using state variable diagram we can write the
following equations:

oy (t,0) = e(t,9),

Toy (t,7+1) =0.5e(t, i) + 0.3z, (t,7)+ Ty (t,7) +4u(t,7), (28a)

21 (t,7+1) =0.2e(t,7) + 0.1z 1 (¢,7) + 4u(t,7)
and

y(tvf) = e(t,i) + 2if}’1,1 (t,9), . . (28b)

e(t,i) = 0.4z (£,7) + 39 (£,9) + 3u(t, ).

Substituting (28b) into (28a) we have:

T3 (t,4) = 0.4y (8,9) + 291 (t,7) + Bu(t, ),

Toq(tyi +1) = 0.521 1 (£,9) + 0.5294 (1,7) + w95 (1,7) + 5.5u(t,9),
T o (ti+1)= 0.18z7 4 (t,0) + 0.279 (t,7) + 5.6u(t,7),

y(t,7) = 2.4m 1 (4,1) + 291 (¢,9) + 3u(t, ).

(29)
Step 4. The desired realization of (26) has the form:

0.5 05 1
Ay =[04], Ajp =[1 0], Ay = 018 Agy = 02 of

&=m7%=Eﬂvﬁ=PﬂM%=UULD=M

(30)
Obtained realization has only nonnegative entries and its
dimension is minimal.
Presented approach can be used for transfer matrices
(5a) of multi-input and multi-output systems. In MIMO
case the transfer matrix (5a) should have the form:

T(s,2) = D_l(s,z)N(s, 2) (or T(s,2) = N(s, z)ﬁ_l(s, 2))(31)

where D(s,z) is diagonal matrix of common denominators
for each row (column) of transfer matrix 7'(s, z) [4].

3. Concluding remarks

A method for computation of positive minimal realizations
with
numerator and with separable denominator of continuous-

of given proper transfer functions separable
discrete linear systems has been proposed. Sufficient
conditions for the existence of positive minimal realizations
of given proper transfer function have been established.
Two procedures for computation of positive minimal
realizations have been proposed. The effectiveness of the
procedures have been illustrated by numerical examples.
Extension of these considerations for 2D continuous-
discrete linear systems described by second Fornasini-
Marchesini model [15] is possible.

An open problem is formulation of the necessary and
sufficient conditions for the existence of solution of the
positive minimal realization problem for 2D continuous-

discrete linear systems in the general form [21].
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Wyznaczanie dodatnich realizacji minimalnych
uktaddw ciggto-dyskretnych o transmitancji
z separowanym licznikiem lub mianownikiem

Streszczenie: Sformutowany zostat problem wyznaczania do-
datniej realizacji minimalnej dla klasy liniowych uktaddéw ciggto-
dyskretnych. Przeanalizowane zostaty dwa przypadki szczegdl-
ne uktadéw ciggto-dyskretnych. Zaproponowana zostata meto-
da, bazujgca na schemacie zmiennych stanu, wyznaczania do-
datniej realizacji minimalnej na podstawie znanej transmitancji
operatorowe] uktadu. Okreslono warunki wystarczajgce istnie-
nia dodatniej realizacji minimalnej dla transmitancji operatorowe;j
z separowanym licznikiem lub mianownikiem. Podano dwie pro-
cedury wyznaczania dodatniej realizacji minimalnej, ktérych efek-
tywnos¢ zobrazowano przyktadami numerycznymi.

Stowa kluczowe: ciggto-dyskretny, dodatni, minimalna, realiza-
cja, wyznaczanie
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