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Stability of fractional discrete-time linear scalar 
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Abstract: In the paper the problems of practical stability and 
asymptotic stability of fractional discrete-time linear scalar sys-
tems with one constant delay are addressed. Standard and 
positive systems are considered. New conditions for practical 
stability and for asymptotic stability are established.  
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1.�Introduction 
The problems of analysis and synthesis of dynamic sys-
tems described by fractional order differential (or differ-
ence) equations have recently considerable attention, see 
monographs [2, 15, 16, 18, 19, 21, 23] and papers [9, 11, 
17, 24], for example, and references therein. 
 The problem of stability of linear continuous-time 
fractional order systems has been considered in many 
paper, see for example [4, 5], Chapter 9 in [16], [20, 22], 
and references therein. 
 Stability problem of fractional order discrete-time 
linear systems is more complicated because asymptotic 
stability of such systems is equivalent to asymptotic sta-
bility of the corresponding infinite-dimensional discrete-
time systems of natural order with delays [10]. In practical 
problems only bounded number of delays (called the 
length of practical implementation) can be considered. In 
this case the corresponding discrete-time linear system of 
natural order has finite number of delays and it is called 
the practical realization of fractional order system. As-
ymptotic stability of this system is called the practical 
stability of the fractional system. The conditions for prac-
tical stability with given length of practical implementa-
tion for standard fractional discrete-time systems were 
derived in [10, 13]. 
 Simple necessary and sufficient conditions for practical 
stability and for asymptotic stability of positive discrete-
time linear systems of fractional order were established in 
[3, 8, 14, 15, 16].  
 Recently, simple analytic conditions for practical sta-
bility and for asymptotic stability of a class of standard 
fractional order discrete-time linear systems were given in 
[6, 7]. 
 The aim of this paper is to give the conditions for 
practical stability and for asymptotic stability of fraction-
al discrete-time linear scalar systems with one constant 
delay, standard and positive. To the best knowledge of the 
author, such conditions have not been established yet. 

 The following notations will be used: ℜ  – the set of 
real numbers; +�  – the set of non-negative integers. 

2.�Problem formulation 
Let us consider the fractional order scalar discrete-time 
linear system with delay described by the homogeneous 
state equation (for +∈�� ) 

 ,1101 −+
α +=Δ ��� �����  ,10 <α<  (1) 

with the initial conditions ��−  )1,0( =� , where ℜ∈��  is 

the state variable, 0�  and 1�  are constant coefficients 

and 
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is the fractional difference of order )1,0(∈α  of the dis-

crete-time function ��  [14–16]. 
 From (2) and (3) it follows that �� �� =Δ0  and 

.1
1

−−=Δ ��� ���  This means that the equation (1) for 
0=α  and 1=α  takes the following forms:  

–� for 0=α  

 ,1101 −+ += ��� �����  (4) 

–� for 1=α  

 .)1( 1101 −+ ++= ��� �����  (5) 

 From the above and classical stability theory of dis-
crete-time linear systems we have the following lemmas. 
Lemma 1. The fractional system (1) with 0=α  (the 
discrete-time system (4), equivalently) is asymptotically 
stable if and only if  

 ,1 01 �� −<  ,1 01 �� +<  .11 −>�  (6) 

Lemma 2. The fractional system (1) with 1=α  (the 
discrete-time system (5), equivalently) is asymptotically 
stable if and only if  

 ,01 �� −<  ,2 01 �� +<  .11 −>�  (7) 

 Using (2) we may write the equation (1) in the form 
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 The equation (8) describes the discrete-time linear 
system with increasing number of delays. 
 The fractional discrete-time system (1) is called posi-
tive (internally), if 0≥��  ( +∈�� ) for any initial condi-
tions 0≥−��  ).1,0( =�   
 The fractional system (1) (or (8), equivalently) is 
positive if and only if [14–16]  

 00 ≥α+�  and .0)(11 ≥α+ ��              (10) 

 The coefficients (9) can be computed by the following 
simple algorithm suitable for computer programming [8] 

 ,
2

1)()(1 +
α−+α=α+ �

��� ��      ,..., 21=k      (11) 

where ).1(5.0)(1 α−α=α�  
 From (11) it follows that 0>)(αkc  for ),( 10∈α  and 

,..., 21=k  Moreover, the coefficients )(α��  strongly de-
crease for increasing k. Therefore, in (8) we can assume 
that k is bounded by some natural number L. This num-
ber is called the length of practical implementation or the 
length of finite memory. In this case the equation (8) 
takes the form (for i>L)  
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 The equation (12) describes a linear discrete-time 
system with L delays in state. 
 The time-delay system (12) is called the practical 
realization of the fractional system (1).  
Definition 1 [14]. The fractional system (1) is called 
practically stable if the system (12) is asymptotically 
stable. 
Definition 2 [14]. The fractional system (1) is called 
asymptotically stable if the system (12) is practically 
stable for .∞→	  
 From Definition 1 and theory of asymptotic stability 
of discrete-time linear systems we have the following theo-
rem. 
Theorem 1. The fractional system (1) with length L of 
practical implementation is practically stable if and only if  
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 The characteristic equation 0)( =
�  of the system 
(12) can be written in the form (for 0≠
 ) 
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 From the above it follows that to checking the practi-
cal stability of the fractional system (1) we can apply the 
classical methods for asymptotic stability analysis of the 
systems (12) with delays. However, these methods may be 
inconvenient with respect to high degree of the equation 
(15) for a large length L of practical implementation. 
 The aim of the paper is to give the simple conditions 
for practical stability and for asymptotic stability of the 
fractional system (1), standard and positive. 
 

3.�Solution of the problem 
We apply the D-decomposition method of Nejmark [12, 
22] for stability investigation of the system (1) in depend-
ence of values the coefficients 0�  and 1� . According to 

this method, the plane ),( 10 ��  is divided by the bounda-

ries of D-decomposition into such regions ),(�
  that any 
point in )( �
  corresponds to such values of 0�  and 1�  

that polynomial (14) has exactly p roots �
  satisfying the 

condition .1|| >�
  The region ),0(
  if it exists, is the 

stability region of the polynomial (14). 
 Any point on the boundaries of D-decomposition cor-
responds to polynomial (14) (or equation (15)) with at 
least one root on the stability boundary, i.e. 1−=�
  or 

1=�
  (the real roots boundary) or ),exp( �� �
 ω=  12 −=�  
(the complex roots boundary). 
 Solving with respect to 1�  the equations 0)1( =�  and 

,0)1( =−�  where )(
�  have the form (14) one obtains 
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Lemma 3. If ∞→	  then the formulae (16) and (17) 
take the following forms  

,01 �� −=                                  (18) 

 .2 01 �� += α                              (19) 

Proof. In [10, 15, 16] and [7], respectively, it has been 
proved that  
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 Substitution (20) and (21) into (16) and (17) gives 
(18) and (19). This completes the proof.  
 In the plane ),( 10 ��  the straight lines (16), (17) (for 

∞<	 ) and (18), (19) (for ∞=	 ) are the real roots 
boundaries. 
 Solving with respect to 0�  and 1�  the equation  
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Fig. 1. The asymptotic stability region of the system (1) with 

0=α  (boundary 1) and regions ),( 	� α  for: 5.0=α ; 
10=	  (boundary 2) and 9.0=α ; 10=	  (boundary 3) 

Rys. 1. Obszar stabilności asymptotycznej układu (1) dla 0=α  
(brzeg 1) oraz obszary ),( 	� α  dla 5,0=α ; 10=	  
(brzeg 2) oraz 9,0=α ; 10=	  (brzeg 3) 
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Fig. 2.   The regions ),( 	� α  for 5.0=α  and 10=	  (boundary 

1) and 5.0=α , 00010=	  (boundary 2) 
Rys. 2. Obszary ),( 	� α  dla 5,0=α , 10=	  (brzeg 1) oraz 

5,0=α , 00010=	  (brzeg 2) 

Proof. We show that the region ),( 	� α  is the asymptotic 
stability region of the system (12) and, by Definition 1, is 
also the region of practical stability of the fractional sys-
tem (1) with fixed )1,0(∈α  and .2≥	  
 According to the D-decomposition method, it is suffi-
cient to prove that in ),( 	� α  exists at least one pair of 
values of 0�  and 1�  for which all the roots �
  of the 
equation (15) satisfy the condition ,1|| <�
  .1,...,2,1 += 	�   
 From Figure 1 (see also figures 2 and 3) and Lemmas 
1 and 2 it follows that the point with 010 == ��  lies in 
the open region ),( 	� α  for all fixed )1,0(∈α  and for all 

.2≥	  
 The equation (15) for 010 == ��  has the form  
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 The curve with parametric description (23), (24) for 
]2,0[ π∈ω  is the complex roots boundary in the plane 

),( 10 ��  of the polynomial (14). 
 From (23) and (24) for 0=ω  and π=ω  we have 
(applying the L’Hospital rule) 
–� for 0=ω  
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 From Lemma 1 we have that in the plane ),( 10 ��  
boundaries of the asymptotic stability region of the sys-
tem (1) with 0=α  are as follows: ,1 01 �� −=  01 1 �� +=  
and .11 −=�  This region is the triangle 0Δ  with the ver-
tices ),1,2( −−  )1,2( −  and )1,0( . The triangle 0Δ  is 
shown in figure 1 (boundary 1). 
 Similarly, from Lemma 2 we obtain that in the plane 

),( 10 ��  the asymptotic stability region of the system (1) 
for 1=α  is the triangle 1Δ  with the vertices ),1,3( −−  

)1,1( −  and ).1,1(−   
 Denote by ),( 	� α  the open region in the ),( 10 ��  
plane with boundaries determined by segments of the 
straight lines (16), (17) and by segment of the curve with 
parametric description (23), (24) for ].2,0[ π⊆Ω∈ω  
 The regions ),( 	� α  for ,10=	  5.0=α  and ,10=	  

9.0=α  are shown in figure 1. The complex roots bounda-
ry (23), (24) is plotted for ],14.0[ ππ=Ω∈ω  for 5.0=α  
and ],0[ π=Ω∈ω  for 9.0=α . 
 Figure 2 shows the regions ),( 	� α  for 5.0=α , 10=	  
and 5.0=α , 00010=	 , where segments of the curve (23), 
(24) are plotted for ],14.0[ ππ=Ω∈ω  for 10=	  and 

],195.0[ ππ=Ω∈ω  for .00010=	  
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the vertices ),,( 10
∞∞∞ = ��� ���  ,3,2,1=�  and sides (straight 

lines segments) ],[ 21
∞∞ ��  ][ 32

∞∞ ��  and ],[ 31
∞∞ �� where 
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11
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,2102
α∞ −−=�   ,112 −=∞�                  (38) 

 
 ,103 =∞�    .113 −=∞�                         (39) 

 

 The triangle 	�  with 5.0=α , 10=	  and triangle ∞�  
with 5.0=α  are shown in figure 3.  
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Fig. 3. Triangle 	�  with 5.0=α , 10=	  (boundary 1) and trian-

gle ∞�  with 5.0=α  (boundary 2)  
Rys. 3. Trójkąt 	�  dla 5,0=α , 10=	  (brzeg 1) oraz trójkąt ∞�  

dla 5,0=α  (brzeg 2) 
  
 Now we consider the stability problem of the positive 
system (1) (the condition (10) holds). 
 
Theorem 3. The positive fractional system (1) with 
given length L of practical implementation is practically 
stable if and only if  
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Proof. Practical stability of the positive fractional system 
(1) is equivalent to asymptotic stability of the positive 
system (12) with delays.  
 From [8] it follows that the positive system (12) is 
asymptotically stable if and only if the positive scalar 
system  

 ,1 �� ��� =+   ,+∈��                        (41) 

is asymptotically stable, where 

 .)(
1

10 �
=

α++α+=
	

�
�����                    (42) 

 From the stability theory of positive systems ([15, 16], 
see also [6]) it follows that the positive scalar system (41) 
is asymptotically stable if and only if .01 >− �  This con-
dition for coefficient a defined by (42) has the form (40) 
and the proof is complete.  

 In [1] it has been shown that all roots of the polyno-
mial 01
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− �  have absolute values less 
than 1 if .||||||1 011 ���� +++> − �  This condition for the 
equation (27) has the form  
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 Using the formula (20) from (28) one obtains 
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 Hence, the condition (28) holds and the characteristic 
equation (15) for 010 == ��  and any )1,0(∈α  has L+1 
roots which satisfy the condition 1|| <�
  ).1,...,2,1( += 	�  
This means, according to the D-decomposition method, 
that open region ),( 	� α  is the asymptotic stability region 
of the system (12) and also is the practical stability region 
of the fractional system (1) with )1,0(∈α . This completes 
the proof.  
 From figures 1 and 2 it follows that for any fixed 

)1,0(∈α  and 2≥	  in the region ),( 	� α  exists a triangle 
	�  which sides are segments of the straight lines (16), 

(17) and a segment of the straight line .11 −=�   
 All points lying in the open triangle 	�  satisfy the 
following inequalities:  
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 It is easy to check that triangle 	�  has the vertices 
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 From the above considerations and Theorem 2 we 
have the following lemma. 
Lemma 4. The fractional system (1) with given length L 
of practical implementation is practically stable if values 
of the coefficients 0�  and 1�  correspond to the points 
lying in the triangle 	� , i.e. the coefficients 0�  and 1�  
satisfy the inequalities (30)–(32). 
 If ∞→	  then from Definition 2 and Lemmas 3 and 4 
one obtains the following lemma. 
Lemma 5. The fractional system (1) is asymptotically 
stable if the coefficients 0�  and 1�  satisfy the inequalities 

 ,001 <+ ��   ,0201 <−− α��   .11 −>�        (36) 

 The coefficients 0�  and 1�  satisfy the inequalities (36) 
if and only if all points ),( 10 ��  lie in the triangle ∞�  with 
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 In the case of positive systems, simple analytic neces-
sary and sufficient analytic conditions for practical stabil-
ity and for asymptotic stability have been given in Theo-
rems 3 and 4.  
 The proposed conditions are original and have not 
been established yet. 
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Theorem 4. The positive fractional system (1) is asymp-
totically stable if and only if 

 .010 <+ ��                                (43) 

 
Proof. The proof follows from Theorem 3 for ∞→	  and 
equality (20). 
 Note that asymptotic stability of the positive fraction-
al system (1) does not depend on the fractional order 

).1,0(∈α  On the fractional order α  depends only the 
positivity condition (10). 
 The region of practical stability with 10=	  (triangle 

11BCA ) and the region of asymptotic stability (triangle 
ABC) of the positive fractional system (1) with 5.0=α  
are shown in figure 4.  
 For any fractional order )1,0(∈α  coordinates of verti-
ces of these triangles are as follows: 
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Fig. 4. Stability regions of the positive system (1) with :5.0=α  
region of asymptotic stability (triangle ABC); region of 
practical stability with 10=	  (triangle 11BCA )  

Rys. 4. Obszary stabilności dodatniego układu (1) dla :5,0=α  
obszar stabilności asymptotycznej (trójkąt ABC); obszar 
stabilności praktycznej dla 10=	  (trójkąt 11BCA ) 

 

4.�Concluding remarks 
The problems of practical stability and asymptotic stabil-
ity of the discrete-time linear system (1) of fractional 
order 10 <α< , standard and positive, have been ad-
dressed.  
 In the case of standard systems, necessary and suffi-
cient condition for practical stability has been established 
in Theorem 2. Based on this condition, simple analytic 
sufficient conditions for practical stability and for asymp-
totic stability have been given in Lemmas 4 and 5. 
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stabilności. Bazując na tych warunkach, sformułowano proste 
analityczne warunki wystarczające stabilności praktycznej oraz 
stabilności asymptotycznej. W przypadku układów dodatnich 
podano proste analityczne warunki konieczne i wystarczające 
stabilności praktycznej oraz stabilności asymptotycznej. 

Słowa kluczowe: układ liniowy, dyskretny, skalarny, niecałkowi-
tego rzędu, opóźnienie, stabilność. 
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Streszczenie: Rozpatrzono problem stabilności liniowych skalar-
nych układów dyskretnych niecałkowitego rzędu z jednym opóź-
nieniem zmiennych stanu. Wykorzystując metodę podziału D, 
podano graficzne warunki konieczne i wystarczające praktycznej 

 
Stabilność dyskretnych skalarnych układów 

liniowych niecałkowitego rzędu                   
z jednym opóźnieniem  

 


