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Abstract: The article presents visual localization system for walking
robots. The method uses two independent visual procedures to
determine position and orientation of the robot’'s body: Parallel
Tracking and Mapping (PTAM) and the procedure which returns
position of the camera in relation to the known marker. The heuristic-
based data fusion method is proposed. The method takes into
account properties of both modules to estimate real position of the
robot. The properties of the method are presented using ground
truth data from experiment on the robotic arm.
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1. Introduction

1.1. Problem statement

Localization of a robot is a fundamental problem in robotics.
Without information about position, the robot cannot
efficiently move in the environment. The robot can only
avoid obstacles by using simple reactive behavior. To reach
a distant goal the robot should plan its motion using
knowledge about its position and configuration of the
environment. It is efficient way to execute the autonomous
mission of a mobile robot.

In our research we use six-legged walking robot (fig. 1).
The robot can walk in rough and unstructured environ-
ment [2]. The orientation of the robot’s body changes
constantly. It is necessary to estimate full state of the ro-
bot (position and orientation). We can use the initial guess
about position and orientation of the robot by taking into
account control signal. However, the error between real and
estimated position of the robot quickly increases because
of slippages. The problem of legged robot localization is
related to recovering the 6D motion of the hand-held came-
ra. In contrast to differential-drive mobile robot, kinematic
model of the walking robot is not useful for localization.

The Messor robot used in this research can carry
less than 0.5 kg. Thus, we cannot use heavy sensors like
SICK Laser Range Finder to built a map and localize
the robot [4]. We are looking for localization system which
works properly indoors in previously prepared environment.
Such a system is required to verify motion planning and
control algorithms for mobile robots in laboratory. Thus,
GPS-based localization systems [13] are not acceptable. In
this paper we present results of our search for localization
system which is light, fast, reliable, inexpensive, and which
can be used indoors on the real walking robot.
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Fig. 1. Messor robot
Rys. 1. Robot Messor

1.2. Related work

Many solutions to localization problem were proposed.
Most of them are focused on Simultaneous Localization and
Mapping (SLAM). As a core of this method the Kalman
Filtering can be used [15]. In this approach, the motion
model is used in prediction phase. Then the observation
model, which uses exteroceptive sensors, updates the pre-
vious a priori estimation of the robot’s state. Recently,
the graph-based SLAM with optimization and loop closure
detection becomes more popular [12].

SLAM framework can be very efficient for long-life
experiments in large areas [16]. In our case the precision
is more important than the capability to operate in large
environment. In contrary to SLAM, the PTAM (Parallel
Tracking and Mapping) algorithm was proposed [8]. In this
approach feature tracking plays important role. As a result
high precision localization system for small workspaces was
obtained. Also visual odometry allows to obtain precise
information about frame to frame transformation by using
template matching [3]. Similarly, the geometrical features
obtained by using laser range finder can be matched to
create estimation of the robot’s pose as well as model of
the environment [14].

There are also many localization systems dedicated for
indoor experiments. One of them is StarGazer localization



system [5]. The robot observes known landmarks located
on the ceiling. The robot uses infrared projector to increase
robustness and detect a passive marker in various light
conditions. The reflected infrared rays are easily detected
by the camera. According to the acquired image, the robot
calculates its position and orientation. The application of
this system is limited by price and size of the sensor.

For indoor localization also beacon systems are used [10].
The concept is based on distance or angle measurements
to stationary beacons. The triangulation is used to deter-
mine position of the robot. It is mainly used for the 2D
localization problem.

Another possibility to recover the full state of the robot
is to use motion capture system. Several cameras observe
known markers which are attached to the robot’s body.
Such systems are successfully used in systems used for
recording fast human motion [17] as well as for film-making
and computer games. It was also used to localize walking
robot during indoor experiments [6]. Although the precision
and speed of the system is high, it is expensive.

In our approach we decided to integrate results from two
localization systems. The first one is PTAM, which is very
precise for small workspaces, but the localization error tends
to accumulate. Therefore, we decided to use system which
determines absolute position of camera in relation to known
marker. Because robot’s legs might obscure the marker,
we decided to locate the marker on the wall and camera
on robot’s board. In this case we can use large markers
to obtain high precision and big workspace. Obviously it
is not possible if the marker is located on the robot. As
a marker we use 0.8 m X 0.6 m checkerboard.

2. Localization system

2.1. Kinematic structure

The localization system combines data from two indepen-
dent modules. We use complementary approach. The final
system combines results from two independent modules
and resolves incompleteness of sensory data. Both modu-
les return information about 6D pose of the camera. Each
module uses its own independent camera. The PTAM mo-
dule returns reliable and precise information about camera
pose only in feature-rich environment. For that reason the
camera of the PTAM module is tilted down [1]. During wal-
king the robot observes rough and irregular terrain which
is feature reach. The camera of the checkerboard module
is mounted horizontally to easily observe and detect the
checkerboard marker.

The PTAM module returns transformation P from
PTAM fixed base coordinate system Opp to the current
pose of the camera Op (fig. 2). The initial position of the
PTAM camera is Op described by the transformation Pp.
We use (1) to determine the transformation Op from the
initial position of the PTAM camera Op to the current
position Op:

P, = PP, (1)

Similarly, the checkerboard module returns transfor-
mation S from checkerboard fixed base coordinate system
Ogs to the current pose of the camera Og (fig. 2). The ini-
tial position of the checkerboard camera is Os, described
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Fig. 2. Kinematic configuration of the sensory system
Rys. 2. Konfiguracja kinematyczna systemu lokalizacji

by the transformation Sp. We use (2) to determine the
transformation O} from the initial position of the PTAM
camera Op to the current position O'p:

SO - Sgl -S ’ (2)

In order to properly combine results from both modules,
we determine the position of the robot in the common
coordinate system W’ (W’ is attached to the chassis which
keeps two cameras together). Then, we determine the
transformation from the initial position of the common
coordinate system W to the current position of the common
coordinate system W’. The transformation Wg (3) is
computed using results from checkerboard system:

Wg = St'SO'St_I: (3)

where S; is a fixed transformation from common coordinate
system W to checkerboard camera coordinate system Os.
Similar computation is used for transformation Wp (4)
which determines the position of the common coordinate
system W’ according to the PTAM measurements:

Wp = P.-Py-P', (4)

where Py is a fixed transformation from common coordinate
system W to PTAM camera coordinate system Op.

Finally, we compute the position of the common coor-
dinate system using egs. (5) and (6):

Ws = S¢-Sg'-S-S;', (5)

Wp = PP, P-P'. (6)

In ideal conditions without measurement error, Wg
should be equal to Wp.

2.2. PTAM module calibration

Although PTAM module returns information about po-
sition of the camera, the scale varies strongly. The scale
depends on images chosen for initialization. The robot re-
quires metric scale to use the estimated position for motion
planning. To recover metric scale the robot performs addi-
tional calibration experiment. The robot moves its body
along each axis of the global coordinate system W. The di-
stance along each axis is set to 10 cm. The robot computes
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the distance along each axis measured in PTAM coordina-
te system Opp. When the robot translates along x axis it
computes vector duz:

dr, = Tup— Tan
dye = Yzp — Yan (7)
dzy = Zgp — Zan

where x,p, is an initial « position of the PTAM camera
and x,, is the position of the camera at the end of the
motion. The same convention is used for y and z axes and
the vectors dy and dz are computed for the transition
along y and z axes. Then, the matrix Tmp is computed:

dxy dzy da
Va2 tdy2+d=2 /o2 +dyl+dz2 \/da2 ydy2+dz2
dyg yy dyz P
p(2,4)
Vda2+dy2+d=2 \fde2+dyl+d=2 \/da2ydy2+dz=2 ,
dzg dzy dz, P
p(3,4)
Va2 tdy2+dz=2 \fdeZ+dy2+dzZ \/da2t+dy2+d=2
0 0 0 1

Py(1,4)

(8)

where Py (i,7) are i-th and j-th elements of the P, matrix

(fig. 2).
To recover metric scale the vector scale is computed:

scale = [l‘scale, Yscale, Rscale, 1]T ) (9)

0.1 and

£/ dzg +dy§ +dz§

where Zscale =

0.1 Yscale =
= scale =
Vdx2+dy24+dz2 ’
0.1
Vdz2+dy?+dz2 '

The vector scale is used to scale transitions obtained

Zscale =

by using PTAM module. Results are in metric scale. The
matrix Tmp is used to rotate the Opp coordinate sys-
tem. Using the transformation Tmp the initial positions
of the coordinate systems Op and Ogp have the same po-
sition and orientation. Finally, the PTAM module returns
transformation:

P=Tmp ' Ppraum. (10)

Then, the metric scale is recovered using element-by-
element product of the last column of the P and vector
scale.

2.3. Measurement fusion

According to (5) and (6) the PTAM and checkerboard
modules return information about position of the W’
coordination system determined in the initial position of
the common coordinate system W. The values returned by
PTAM and checkerboard module are not always the same.
Because of the sensor noise and properties of the position
estimation methods the returned values are different. To
compute final position of the camera system we use heuristic
approach for measurement fusion.

The most popular method for measurements fusion is
the Kalman filter. Various modifications to the Kalman
filtering can be used to obtain general framework for
integration multi-system measurements [9]. The Kalman
filter stores information about past state of the system. The
sensor failure might cause significant measurement error [9].
For multi-sensor data fusion and fault detection a Support
Vector Machine and adaptive neuro-fuzzy inference system
(ANFIS) can be used [7]. It was also presented that the
heuristic system, which takes into account the expert
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Fig. 3. Relation between distance and variance for the
checkerboard-camera system

Rys. 3. Zalezno$¢ pomiedzy odlegtoscig a wariancja dla uktadu
kamera-szachownica

knowledge about phenomena, can outperform Kalman
filtering [11]. The fuzzy logic is proposed as a better
alternative to Kalman filter to combine odometry with
optical gyroscope.

The integration procedure in our localization system
computes weighted mean value of both measurements. We-
ights are inversely proportional to variance of both systems.
The PTAM module has three constant variances. The va-
riance depends on the information about tracking quality
which is returned by PTAM algorithm [8]. Three levels
of certainty are distinguished: good tracking (the smal-
lest variance), poor quality and lost tracking (the variance
is 00).

In the checkerboard module the quality of measure-
ments decreases when the distance to the checkerboard
increases. Despite the fact that the marker is big, when the
distance is large, image resolution and size of the pixel play
important role. We performed verification experiment to
find the relation between distance and the variance of me-
asurements for checkerboard module (fig. 3). The results
of the experiment show that the relation between distan-
ce to the checkerboard and variance is exponential. We
approximated this relation using third degree polynomial.

The variance matrices for PTAM and checkerboard
measurements are diagonal. We assume that 6D coordinates
are not correlated. Only diagonal elements of 6 x 6 variance
matrices are not equal to zero.

Taking into account the variance matrices and the
results obtained from PTAM and checkerboard modules,
the final position is computed using the weighted mean
value (note that we use inverse of the variance as a weighting
factor):

X = (S\jliR + PQ&R)A ’ (S;ziR "Xs + P\?ziR ~xp), (11)

where Svar and Pyar are variance matrices for checker-
board and PTAM, respectively. Coordinates with S index
are obtained using Checkerboard and with P are obtained
using PTAM.

Finally, we use (12) to compute the position estimates:



Fig. 4. Testbed for experiment with KUKA robotic arm
Rys. 4. Stanowisko do eksperymentu na manipulatorze przemysto-

wym KUKA
x s Trp s
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where a, 8 and 7 are rotations around z, y, z axes (roll,
pitch, yaw angles in RPY Euler angles notation).
The matrix K is computed according to the equation:

K = Svar - (Svar + PVAR)_1 . (13)

3. Results

3.1. System verification

Verification of the measurement fusion system was perfor-
med using KUKA manipulator robotic arm. The experi-
mental set is presented in fig. 4. Two cameras are attached
to the end effector of the robot. The camera of the checker-
board system is mounted horizontally. It allows to detect
the checkerboard marker which is located on the vertical
wall. The camera of the PTAM module is tilted down. It
observes the rough terrain mockup (feature-reach environ-
ment).

At the beginning of the experiment the PTAM module
is calibrated to recover metrical scale. Then, the end effector
moves in the workspace. The reference motion of the end
effector is assumed as ground truth. We save the path
returned by PTAM and checkerboard module and the final
path. The results are shown in fig. 5.

At the beginning of the experiment the cameras are
moved towards the checkerboard (along y axis) (fig. 5 A).
The motion along = and z axes is parallel to surface of
the checkerboard marker. In the fig. 5 B, C and D one
can see the results of the localization algorithms and final
measurements fusion for each axis of the global coordinate
system W. The measurements from both modules differ.
The final position estimation is a combination of two initial
PTAM and checkerboard estimations.
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Fig. 5. Results of the experiment on the KUKA robotic arm
Rys. 5. Wyniki eksperymentu przeprowadzonego na manipulatorze
przemystowym KUKA

It can be also seen that between 800 and 1000 sample,
the final estimated position is equal to the position given
by the PTAM module. The checkerboard camera lost the
marker. In this case the values on diagonal of matrix
Svar are set to co. In this case the system ignores data
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Fig. 6. Influence of change of the variance matrix on the ultimate
result of measurements

Rys. 6. Wptyw zmiany macierzy kowariancji na ostateczny wynik
pomiaru

from the checkerboard module and uses data only from the
PTAM module. During all experiments, the error does not
exceed 2 cm.

The properties of the measurements fusion strategy
can be seen in fig. 6. In fig. 6 the measured yaw angle is
presented. The real value of the yaw angle during the expe-
riment was constant and set to zero. The values measured
by PTAM and checkerboard modules are constant but not
equal zero. A constant offset can be observed. It suggests
that extrinsic parameters of the cameras (transformations
S: and P:) are not well calibrated.

At the beginning of the experiment presented in fig. 6
the weights connected to the PTAM module are bigger (the
variance of the PTAM measurements is smaller). When
the end effector with cameras approaches checkerboard
marker the measurements variance of the checkerboard
module decreases. The checkerboard module returns more
reliable data. The system takes into account these properties
of the measurement system during computation of the
final pose estimation according to (12). The weights of
the checkerboard measurements increase and the final
estimation of the yaw angle (fig. 6) becomes closer to the
results obtained using the checkerboard module. Again,
between 800 and 1000 sample one can see the situation
when the checkerboard camera lost the tracked target and
the final estimation was the same as the estimation from
the PTAM module.

Additional experiment was performed to show the
properties of the localization system when the cameras
are rotated. Again, the constant offset can be observed.
The reference pitch angle (rotation around y axis) was
modified by 10° at each step during the experiment. The
system properly measures the behavior of the camera and
the measurement error does not exceed 4°. It can be used
on the real robot. However, the inertial measurement units,
that is, XSense MTi, have better accuracy.

Another property of the system can be seen in fig. 7.
At the end of the experiment the angle measured by chec-
kerboard decreases whilst the angle measured by PTAM
increases. The real angle value was increasing. The checker-
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Fig. 7. Measured pitch angle during experiment with the KUKA robot
Rys. 7. Zmierzony kat pitch podczas eksperymentu na robocie
KUKA

board module returns erroneous values, because the marker
used is rotational invariant (for pitch angle 180° and 0° the
image of the checkerboard is the same). In the future we
are going to add color to the single field of the checkerboard
to deal with ambiguity and to determine the orientation of
the camera.

4. Conclusions and future work

The article presents the measurement fusion strategy for
indoor localization system. The data from PTAM and the
checkerboard module are combined to obtain more relia-
ble measurements. The fusion method takes into account
the properties of both methods. The variance is used as
a weighting factor. When the cameras are close to the chec-
kerboard the role of the PTAM module decreases. Similarly,
if the observed scene is not feature-rich the certainty of
the PTAM measurements decreases and the system relies
mainly on measurements from the checkerboard module.

The obtained results can be used to localize a 6-dof
mobile robot indoors. The system is useful for walking and
flying robots, where data from odometry are not reliable.
The system can estimate 6-dof pose of the robot. However,
the data about orientation are less reliable. If it is possible,
the system can be supported by high-quality Attitude and
Heading Reference System (AHRS).

The proposed measurement fusion can be used as an
alternative to expensive motion capture systems. The
system is inexpensive — only two USB cameras are required.
Moreover, the proposed system is fast and can be used to
estimate position of the robot 15 times per second.

In the future we are going to use an AHRS system
as additional input to the system to obtain more reliable
information about the inclination of the robot’s platform.
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Integracja danych pomiarowych w systemie
lokalizacji robota kroczacego

Streszczenie: Artykut przedstawia wizyjny system lokalizacji robota
kroczacego. Przedstawiono wykorzystanie algorytmu PTAM oraz
metody okreslajgcej potozenie kamery wzgledem znacznika do
okreslenia potozenia robota. Przedstawiono metode fuzji danych z
obu systemdéw pomiarowych. Proponowana metoda jest alternatywag
dla drozszych systemdéw ‘motion capture’ wykorzystywanych do
weryfikacji eksperymentalnej wewnatrz laboratorium.

Stowa kluczowe:
system wizyjny

lokalizacja robota mobilnego, fuzja danych,
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