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Abstract: The paper presents results of research on the develop-
ment of robot perception systems. On the basis of the selected
exemplary system, typical problems occurring during design of such
systems were indicated. Those problems motivated the work set
out to formalize the data flow by the use of metamodelling — the
key technology of model-driven engineering. The obtained meta-
model facilitates development of such systems and enables further
creation of tools for models’ editing, validation and automatic gene-
ration of relevant source code skeletons. Additionally, requirements
for a robot perception systems runtime environment were identi-
fied and compared with existing component-based robot software
frameworks.

Keywords: robot, control system, perception, data flow, metamodel,
model-driven engineering, component-based systems

obots, similarly to humans, need to perceive the
R environment to perform their tasks. This involves
acquiring, processing and interpreting data from sensors,
such as cameras or microphones. Typically, data come
from several sources, they flow through diverse successive
processing steps, and arrive at a unit responsible for taking
decision about what to do next. The underlying structure of
the data flow in perception systems resembles more a tree
(with leaves and root corresponding respectively to sensors
and the main decisional module) than a sequence.

Data flows are difficult to model with general-purpose
programming languages, since (in most cases) their syntaxes
are inspired by a natural language — they are designed to
specify successive operations in imperative style. Trees
(or graphs in general) are easier to model with graphical
languages, which enable us to express the design in a form
that is very similar to the way we think about these
structures — such representation is easier to comprehend,
verify and debug. Unfortunately, experimental robotics
lacks tools that facilitate graphical, graph-oriented design
of perception systems and their implementation.

We begin by introducing an exemplary perception
system that enables the robot to recognize objects based on
data from a pair of RGB- (image) and D- (depth) cameras.
We use this example to motivate sections which follow,
where we formalize the data flow of perception systems
and identify challenges of their design and implementation.
Our aim is to create a foundation for software tools that
support the perception systems development process.
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1. Motivating example

As a relatively complex example of perception systems —
one that includes several flows and operations on data — we
take multi-modal segmentation of dense depth maps with
associated color information (as described in [1]). Typically,
we describe such systems with use of data flow graphs
(fig. 2), where solid boxes represent data processing nodes
and dashed boxes group them together into units that could
be reused also in other systems. Our algorithm combines
color and depth information to identify independent objects
in the environment of a robot (fig. 1).

Short description of the whole process is as follows.
At first, we acquire color and depth data from Kinect
sensor. Then, we convert depth data to a cloud of 3D-
points and estimate normal vector for each of them. As
a result, we have three, supplementary, sets of data: color,
depth and normal vectors. In the next step, for each
of them we calculate differences of values between each
pixel and its neighbours (e.g. angle difference calculated
for normal vectors or euclidean distance for depth) and
accumulate those differences (weighted by specified factors
for each modality) using either sum or maximum. After
accumulation, we have all the information integrated into

one image and segment it with the region growing algorithm.

Fig. 1. Result of operation of the multi-modal segmentation. From
top-left: color image, depth map, resulting segments

Rys. 1. Wynik dziatania segmentacji wielomodalnej. Od lewego gor-
nego rogu: obraz kolorowy, mapa gtebi, segmenty wynikowe

We can clearly identify some of the commonalities in
diagrams like the one for the perception system described
above. Processing nodes (or components) possess inputs
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Fig. 2. The structure of data flow realising the multi-modal segmentation
Rys. 2. Struktura potoku przetwarzania dla zadania wielomodalnej segmentac;ji

and outputs, but their exact numbers and types are specific
to particular nodes. Flows link outputs with inputs; one
output may be linked to more than one input (but not
the opposite). Those links should not be hardcoded in
the implementation of a node — we want to reuse nodes in
different contexts, hence we want them to be as independent
from each other as possible (i.e., loosely coupled).

Taking into account this independence and reusability,
another problem arises — how big (or how small) our
components should be. On the one hand, we expect them to
be as small as possible, which increases the overall system
flexibility. But on the other, it also might be convenient
to reuse the whole fragments of the existing data flow
network. Hence, we demand a mechanism enabling such
a composition.

2. Formalization of the data flow

Perception (in general) is a complex process, which involves
flow of data from sensors to a decisional unit. Data flow
within such a process can be represented as a directed
graph G = (V| E) with nodes V' corresponding to individual
operations (e.g., processing, combining and interpreting
data) and edges E C V x V corresponding to flows of
results of one operation to another.

Formalization with mathematical notation enables us to
reason about certain properties of the data flow that are es-
sential for scheduling operations of the perception process,
e.g., presence of cycles. However, the above description mis-
ses one of the primary aspects of software implementation
of the perception systems, i.e., reusability of both the indi-
vidual data processing nodes and subgraphs of the data
flow graph.

Individual nodes of the perception data flow and the
perception system as a whole intuitively map onto so-
ftware components and component-based software system,
respectively.

Following the component-based approach, we would like
each processing node to contractually define its interfaces,
in particular, the types of data consumed and produced [2].
The description of perception systems solely in terms of no-
des and edges of a data flow graph arguably fails to capture
such important features of the design. Moreover, mathe-
matical notation is impractical for automatic processing by
the computer as a part of the software development pro-
cess. Clearly, we need some other formalism that better fits
the data flow modelling.

2.1. Domain-specific modelling languages

Domain-specific modelling languages are designed to forma-
lize the application structure, behaviour, and requirements
within particular domains [3]. Formally, a domain-specific
modelling language L is typically defined as a 5-tuple of
concrete syntax C, abstract syntax A, semantic doma-
in S, and semantic and syntactic mappings (Mg and Mc¢):
L=(C,A,S, Mg, Mc) [4].

In this paper we focus on the abstract syntax, which
defines the concepts, relationships and integrity constraints
of a modelling language dedicated to design of robot
perception systems. We postpone definition of the concrete
syntax, i.e., the specific notation used to express the designs,
and syntactic mapping Mc: A — C, which assigns notation
symbols to the elements of the abstract syntax, until
further research on the concepts related to scheduling data
flow for concurrent execution. Similarly, we only briefly
address the semantic domain, which is used to explain
the meaning of the designs expressed in the modelling
language, and the semantic mapping Mgs: A — S, which
relates syntactic concepts to those of the semantic domain.
Rather, we prefer to rely on an existing software framework
as the semantic domain and express semantic mapping
as relationship between the modelling language and the
software framework.

2.2. Introduction to metamodelling

The first step in the development of a domain-specific lan-
guage is to identify abstractions used to solve the problem
at hand [5]. This includes distinguishing the concepts of
the problem domain and their relationships. The next step
is to formalize the identified abstractions. Metamodelling
is a formalism, which is particularly well suited to this
purpose. It is more expressive and flexible than alternati-
ve formalisms, e.g., BNF grammars or UML profiles [6].
Moreover, the model-driven engineering technology makes
it much easier to develop tools that facilitate the use of
the modelling language, if its abstract syntax is defined as
a metamodel [3].

The basic concepts of metamodelling include system,
model and metamodel. In this paper we adopt the definitions
of these terms as found in [7] and refer to a system as
a part of the world that is the subject of communication
or reasoning. The model is a description of a system (or
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a part of a system) written in a well-defined language.' The
metamodel is a definition of a well-defined language, which
is used to describe models. It is convenient to represent the
above concepts using the representedBy and conformsTo
relationships (fig. 3).

System

representedBy

[ Model |

conformsTo

Metamodel

Fig. 3. Basic concepts of metamodelling [8]
Rys. 3. Podstawowe pojecia metamodelowania [8]

The choice of a meta-metamodel, i.e., a formalism for
definition of the modelling language, depends mainly on
the availability of tools supporting the development of
a complete modelling solution. MetaEdit+ was among the
first commercially available domain-specific development
environments [5]. The potential of the metamodelling
approach was evidenced by the release of Domain-Specific
Language Tools from Microsoft [9]. The Eclipse Modeling
Framework (EMF) is the leading open-source competitor
in the field [10, 11].

We motivate our choice of EMF as the modelling envi-
ronment mainly by its popularity in the research commu-
nity, which favours open-source over proprietary solutions.
EMF provides advanced support for both graphical and
textual notation of modelling languages, as well as model-
to-model and model-to-text transformations. Individual
tools of the framework follow standards of the Object Ma-
nagement Group (OMG).

2.3. Metamodel of perception systems

Metamodels of EMF are typically described with graphi-
cal notation that resembles UML class diagrams, which
captures concepts, their attributes and relationships. Inte-
grity constraints that cannot be expressed on a diagram
are usually specified as formal annotations in the Object
Constraint Language (OCL) [12]. OCL annotations declara-
tively express invariants of the constructs of the modelling
language; EMF ensures that models conforming to a given
metamodel satisfy such constraints.

The root concept of the robot perception system is an
abstract Component® (fig. 4). The name attribute identifies
an instance®, while description serves only the purpose of
documentation. These general attributes are common to
several concepts of the domain; they are used to generate
names and comments in software artefacts derived from
the model, e.g., code skeletons and documentation.

1A well-defined language is a language with well-defined
form (syntax) and meaning (semantics), which is suitable for
automated interpretation by a computer [7].

2We denote names of concepts, attributes and relationships
of the metamodel by the use of sans serif font; names in italics
denote abstract concepts.

SEMF provides an additional feature that enforces uniqueness
of the name identifiers. By convention, this feature is omitted
from metamodel diagrams.

262

context LeafComponent
-- leaf component needs to accept or produce data
inv: inputs->notEmpty() or outputs->notEmpty()

context ContainerComponent

-- external ports routes data to/from internal components
inv: contains.inputs—->includes(outputs.propagatesTo)
inv: contains.outputs->includes(inputs.delegatesFrom)

Listing 1: OCL invariants imposed on the data flow
metamodel

There are two kinds of concrete components: LeafCom-
ponents, which represent atomic computations on data,
and ContainerComponents, which represent reusable subgra-
phs of data flow and recursively group other Components.
An abstract concept of Property parametrizes LeafCompo-
nents; it enables the developer to change parameters of data
processing at runtime. NumericProperty represents a range
of values, e.g., threshold of image binarization, with the
minValue and maxValue limits; the designer specifies the de-
fault setting as defaultValue. EnumProperty represents a fixed,
non-empty list of possible values; the head of the list is the
default setting.

Data flow interface of a Component is defined by its In-
putPorts and OutputPorts, for which the common dataType
attribute (inherited from the abstract Port concept) speci-
fies the type of consumed and produced data, respectively.
LeafComponents contain PrimitivelnputPorts and PrimitiveOut-
putPorts, as specified by the inputs and outputs relationships.
We distinguish separate concepts of the ports of LeafCom-
ponents, which directly map onto storage for data in the
memory of a runtime system. Such components require at
least one input or output port (listing 1).

The ContainerComponent (a composite component) re-
cursively groups other Components with the contains rela-
tionship. We adopt the terminology of OMG: input ports of
the container delegate data to the input ports of its internal
components, while its output ports promote data produ-
ced by the internal components. We distinguish separate
concepts of the ContainerlnputPort and ContainerOutputPort,
which represent routing of data rather than locations in the
memory. The delegatesTo and propagatesFrom relationships
specify destinations and origins of data flow between the
externally visible ports and the ports of the internal parts
of a ContainerComponent, respectively. OCL invariants limit
scope of these relationships to the internal components of
the container (listing 1).

Data flow from output to input port is represented
by the sink and source bi-directional relationships. We
intentionally forbid directing data from more than one
output to a single input port — we have found such designs
seldom required and difficult to debug.*

4For brevity, we omit the invariants that limit the scope of
the sink/source relationships to a single ContainerComponent; their
specification in OCL involves a complex navigation across the
metamodel.
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Fig. 4. Metamodel of robot perception system
Rys. 4. Metamodel uktadu percepcji robota

3. Requirements of the robot perception
software

Data flow specified by the presented metamodel matches
requirements of diverse domains — not only robot percep-
tion systems. However, implementations of such systems
require certain features, which distinguish them from other
applications.

The robot perception system, as the part of a robot
control system, needs to execute in real time. Effector devi-
ces (indirectly, i.e., by the decisional unit) impose deadlines
for data processing. The rate of data delivery from the per-
ception system is typically limited by one (or several) of
sensory inputs or data processing subroutines. However,
performance of the robot control requires the implemen-
tation of the perception system to prevent delays, which
are typical in business-oriented data flow applications. In
particular, all the resources, such as memory or threads,
required for executing and passing data between the com-
ponents of a perception data flow need to be pre-allocated
before staring the operation.

Data inputs — and so the perception systems — are
distributed. Data from sensors located in different places
often require pre-processing to reduce their volume before
transmitting (e.g. over wireless) to other nodes of the data
flow. Also, resource-intensive computations often require
processing power that exceeds capabilities of a single
computer. Thus, the runtime system must deploy and
configure components on different nodes of LAN.

Typical workstation PCs often lack the performance
required for computing-intensive operations, e.g., image
recognition. Recently, it became possible to accelerate
some operations on data within perception systems by
executing them on graphic processing units (GPU). Such
approach extends the requirement of portability toward
new kinds of specialized hardware devices, which need to
be integrated with components implemented in general-
purpose programming language like C++.

The performance of data flow programming heavily
depends on the scheduling of individual operations on data.
The sequential execution of subroutines of the components
— the easiest one to implement — offers the worst processing
time. Alternatives, which promise gain in efficiency, include
two kinds of concurrency: parallelizing, i.e., running several
operations in one data processing step, and pipelining, i.e.,
running a single operation in several data processing steps.

Our survey, which we briefly summarize in section 5,
revealed that none of the popular robotics software frame-
works satisfies all of the listed requirements. Thus, in next
section we describe our ongoing work on mapping of the
concepts of the presented metamodel onto a custom frame-
work dedicated to processing sensory information in robot
control systems.

4. DisCODe

Robot perception systems, which typically involve several
steps of data processing, readily map onto component-
based software frameworks. One of such frameworks is
DisCODe (Distributed Component Oriented Data Proces-
sing) [13]. With its core implemented in C++, the design
of DisCODe follows three paradigms: component-based
programming [14], which provides measures for modulari-
zation and reusability, reflexive programming [15], which
enables the user to introspect the system at runtime, and
generic programming [16], which instantiate the software
templates with data types and subroutines provided by the
developer. Supported platforms currently include Linux
and Windows.

DisCODe provides a number of ready-to-use compo-
nents dedicated to robot perception, e.g., acquiring data
from cameras, and debugging of sensory data processing,
e.g., loading and saving images from/to files. Individu-
al components are implemented as dynamically loaded
libraries (SOs or DLLs, depending on the operating sys-
tem), which are organized in DCLs (DisCODe Component
Libraries). For most of the tasks, the developer creates
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a number of custom components and combines them with
those provided by the framework.

Components in DisCODe communicate by data flows;
they contain input and output buffers parametrized by
data types and (optionally) also variables that need to
be preserved between the calls of their data processing
subroutines. The design follows the inversion of control
pattern — the framework triggers the operation of the
components, and in this way also schedules the execution
of the data flow. At the time of writing, the schedule in
statically determined by a configuration file with a mapping
of components to threads of the underlying operating
system. Thus, the framework exploits the performance
offered by modern multi-core workstation PCs.

DisCODe provides graphical interface, which enables
the user to configure the components in runtime. The
number and types of the properties of a given component
are determined automatically by the use of reflection in the
code. Properties with a range of values are accessed with
sliders, and those with a list of values, with radio buttons.

5. Related work

Software frameworks facilitate the definition of processing
pipelines in various ways. General-purpose environments
oriented on data flow programming, e.g., Simulink and Lab-
VIEW, enable the developer to easily build an application
from a set of predefined building blocks. However, they are
difficult to customize and integrate with existing software
libraries. Moreover, they miss the requirement of distributed
processing and the use of concurrency is hidden from the
programmer.

Ecto — a lightweight, open-source framework dedicated
to implementation of data flows in robot control systems —
automatically schedules directed acyclic graphs on multi-
core processors®. However, it neither supports distributed
operation nor modification of parameters in runtime. ROS,
a full-featured predecessor of Ecto, offers these features, but
is not a real-time system [17]. Moreover, Ecto and ROS, as
software frameworks, do not formalize the design, but only
provide guidelines for the developer, who implements the
data flow directly in C++.

Orocos is a real-time, component-based framework dedi-
cated to robot control, which can be also used as a runtime
environment for robot perception system [18]. There are
preliminary reports on formalizing Orocos component mo-
del by the use of the EMF metamodels.® However, the
formalized subset enables only the design of plain, i.e.,
non-composite data flows.

6. Conclusions

‘We have reported on our ongoing work on the development
of robot perception systems. Based on our experience and
a motivating example presented in section 1, we identified
some commonalities in our earlier works and formalized
them by the use of metamodeling. The metamodels form
central elements of a domain-specific modelling language
and enable rapid development of complete modelling so-
lutions, which include graphical environments for editing

Shttp://ecto.willowgarage.com/
Shttp://www.best-of-robotics.org/bride/bem.html
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and validation of models as well as their automatic trans-
formation into other software artefacts, e.g., source code
skeletons.

We have also identified the requirements for the runti-
me of robot perception systems and matched them with
our component-based software framework DisCODe. The
framework still lacks support for distributed processing and
enables only static scheduling of data flow. However, we
have already successfully used it for implementation of se-
veral interesting perception systems, e.g., for a system able
to localize dices and determine the game state, being a key
element in the robotic system playing a game of dice.

Our next steps will be to develop a graphical modelling
solution based on the presented metamodel and the Eclipse
Modeling Framework and integrate it with model-to-code
transformation, which generates skeletons of source code,
configuration files and documentation from a single design.

Besides, our work pointed to several interesting fields
worth further research. The first one is asynchronous arri-
val of data to different input buffers of a given component.
Being aware that in the majority of complex robotic ap-
plications developers write special switches enabling the
execution of a given handler only in the case when the
required data is present, we plan to develop special mecha-
nisms facilitating such solutions. We are going to use the
model-driven engineering to solve this problem. Another
problem is extending the metamodel with constructs for
specification of automatic scheduling of data flow compu-
tations — most of the so far investigated component-based
systems use the round-robin-like algorithms, which belong
to the simplest scheduling mechanisms. Taking into acco-
unt the real-time requirements of robot perception systems,
we identified this as an important issue.
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Modelowanie przeptywu danych
w komponentowych uktadach percepcji robotéw

Streszczenie: W artykule przedstawiono wyniki prac poswie-
conych budowie uktadéw percepcji systemdw robotycznych. Na
podstawie wybranego przyktadu ztozonego systemu percepcji wy-
rézniono typowe problemy wystepujace podczas projektowania
takich systeméw. W celu ich rozwigzania dokonano formalizacji
modelu przeptywu danych przy uzyciu metamodelu — kluczowego
elementu w inzynierii opartej na modelach. Opracowany metamodel
utatwia rozwdj takich systeméw oraz umozliwia stworzenie graficz-
nych narzedzi do edycji modeli konkretnych systeméw percepciji, ich

walidacji, a ostatecznie do automatycznego generowania szkieletow
kodu. Ponadto, zidentyfikowano wymagania odnosnie srodowiska
wykonawczego omawianej klasy uktadéw oraz poréwnano je z istnie-
jacymi ramowymi strukturami programowymi opartymi na podejsciu
komponentowym.

Stowa kluczowe: robot, uktad sterowania, percepcja, przeptyw

danych, metamodel, inzynieria oparta na modelach, systemy kom-
ponentowe
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