
Pomiary Automatyka Robotyka nr 2/2013 135

Indexes driven mechanism
for grouped SQL queries

Radosław Boroński, Grzegorz Bocewicz

Department of Electronics and Computer Science, Koszalin University of Technology, Poland

Abstract: This paper discusses the problem of automatic minimi-
zation of a response time for a database workload by a proper
choice of indexes on production systems. The main objective of
our contribution is to illustrate the database queries as a group
and search for good indexes for the group instead of an individual
query. We present queries block relation conditions for applying
the concept of grouped queries index selection. We also intro-
duce genetic algorithm that we use in experimental test. Numeri-
cal results are presented to show quality of the recommended
approach.

Keywords: index, genetic algorithm, database, grouped
queries

1.�Introduction
Getting database search result quickly is one of the crucial
optimization problems in a database processing.
 For the purposes of support and automation of
production systems facilities of large corporations (General
Motors), there is a continuing need for analysis of multi-
source unsorted data. Companies with decision-making
support tools take data feeds directly from relational
databases or data warehouses. In a data warehouse to
which external databases are linked and analyze terabytes
of data in 24 × 7 window, there is a need to extract
information from its various areas quickly and efficiently.
In order to achieve this, a data mining processes are
performed consisting SQL queries that in turn gather
information from multi-dimensional data area. Such SQL
queries block runs in production support systems periodi-
cally. Because of its repeatability and reproducibility, it is
important that this process runs efficiently and automati-
cally and has no negative impact on the overall produc-
tion process.
 It is a common practice to minimize the database
search process at minimal cost. A database administrator
(or a user) may redesign the physical hardware structure
or reset the database engine parameters or try to find
good table indexes for a current query. Nowadays, most
vendors offer automated tools to tune the physical design
of a database as part of their products to reduce
the DBMS’s total cost of ownership [3]. As adding more
CPUs or memory may not always be possible (i.e. limited
budget) and maneuvering within hundreds of database
parameter may lead to a temporary solution (wrong
settings for other database queries), index optimization
should be considered as first.

 Indexes are optional data structures built on tables.
Indexes can improve data retrieval performance by
providing a direct access method instead of the default full
table scan retrieval method [7]. In the simple case, each
query can be answered either without using any index, in
a given answer time or with using one built index, reduc-
ing answer time by a gain specified for every index usable
for a query [14]. Hundreds of consecutive database queries
together with a large amount of data involved lead to
a very complex combinatorial optimization problem. In
production systems with relational databases or data
warehouses, consisting hundreds of millions records of
unsorted data, there is a need to improve the response
time. Time needed to obtain result of non-indexed data-
base tables may take many hours. Such a long response
time is not acceptable for production systems. Indexes in
such cases may reduce the response time of 50 %
(depending on which columns are used for the indexing).
The classic index selection method focuses on a tree data
structure, which could limit the search area as much
as possible. Literature discusses such B-tree types as:
−� Sorted counted B-trees, with the ability to look items

up either by key or by number, could be useful in
database-like algorithms for query planning [4],

−� Balanced B*-tree that balances more neighboring
internal nodes to keep the internal nodes more densely
packed [12],

−� Counted B-trees with each pointer within the tree and
the number of nodes in the subtree below that pointer
[19].

The B-tree and its variants have been widely used in
recent years as a data structure for storing large files
of information, especially on secondary storage devic-
es [11]. The guaranteed small (average) search, insertion,
and deletion time for these structures makes them quite
appealing for database applications.
 In this paper, we discuss a simple variant of the B-tree
(balanced B*-tree, proposed by Wedekind [20]), especially
well-suited for use in a concurrent database system [15].
 While the selection of indexes structure has a very
important role in the design of database applications, one
should plan the indexes structure and number of indexes
at the early stage of database development operation.
In such situations more important is to ask a question:
“how to choose a set of indexes for the selected query
sets?” It turns out that the proper selection of indexes can
bring significant benefits for the database query execution
time. Typical approaches found in the literature focus
mainly on the search indexes only for a single column or
a single query [4, 9–10, 16–17]. This paper presents

 Indexes are optional data structures built on tables.
Indexes can improve data retrieval performance by
providing a direct access method instead of the default full
table scan retrieval method [7]. In the simple case, each
query can be answered either without using any index, in
a given answer time or with using one built index, reduc-
ing answer time by a gain specified for every index usable
for a query [14]. Hundreds of consecutive database queries
together with a large amount of data involved lead to
a very complex combinatorial optimization problem. In
production systems with relational databases or data
warehouses, consisting hundreds of millions records of
unsorted data, there is a need to improve the response
time. Time needed to obtain result of non-indexed data-
base tables may take many hours. Such a long response
time is not acceptable for production systems. Indexes in
such cases may reduce the response time of 50 %
(depending on which columns are used for the indexing).
The classic index selection method focuses on a tree data
structure, which could limit the search area as much
as possible. Literature discusses such B-tree types as:
−� Sorted counted B-trees, with the ability to look items

up either by key or by number, could be useful in
database-like algorithms for query planning [4],

−� Balanced B*-tree that balances more neighboring
internal nodes to keep the internal nodes more densely
packed [12],

−� Counted B-trees with each pointer within the tree and
the number of nodes in the subtree below that pointer
[19].

The B-tree and its variants have been widely used in
recent years as a data structure for storing large files
of information, especially on secondary storage devic-
es [11]. The guaranteed small (average) search, insertion,
and deletion time for these structures makes them quite
appealing for database applications.
 In this paper, we discuss a simple variant of the B-tree
(balanced B*-tree, proposed by Wedekind [20]), especially
well-suited for use in a concurrent database system [15].
 While the selection of indexes structure has a very
important role in the design of database applications, one
should plan the indexes structure and number of indexes
at the early stage of database development operation.
In such situations more important is to ask a question:
“how to choose a set of indexes for the selected query
sets?” It turns out that the proper selection of indexes can
bring significant benefits for the database query execution
time. Typical approaches found in the literature focus
mainly on the search indexes only for a single column or
a single query [4, 9–10, 16–17]. This paper presents

NAUKA

136

NAUKA

an approach associated with the search query indexes for
groups called blocks.
 In this case we will consider B-tree indexes. A B-tree
index allows fast access to the records of a table whose
attributes satisfy some equality or range conditions, and
also enables sorted scans of the underlying table [18].
Also, we focus on production systems databases with the
same SQL queries repeated periodically. By doing so, we
eliminate database queries’ low selectivity factor where no
good indexes could be found due to changing queries sets.
 The rest of the paper is organized as follows: in
Section 2, we describe a problem statement. In Section 3,
we briefly present a classic index selection approach to-
gether with simple examples that illustrate the subject. In
Section 4, we demonstrate a new method of grouped que-
ries index selection and compare examples results with
classic approach. In Section 5, we present a genetic
algorithm approach we use for good indexes selection.
Test and comparisons with commercial tools results are
presented in Section 6. Section 7 presents our conclusions
and further works.
�

2.�Problem statement
The aim of this work is to suggest an approach of multi-
queried SQL block where a sub-optimal or optimal solu-
tion is to be found that gives decision makers some leeway
in their decisions. The main goal is to choose a subset of
given indexes to be created in a production system data-
base, so that the response time for a given database work-
load together with indexes used to process queries are
minimal.
 The index selection problem has been discussed in the
literature. Several standard approaches have been formu-
lated for the optimal single-query and multi-query index
selection. Some past studies have developed rudimentary
on-line tools for index selection in relational databases,
but the idea has received little attention until recently.
In the past year, on-line tuning came into the spotlight
and a more refined solution was proposed. Although these
techniques provide interesting insights into the problem
of selecting indexes on-line, they are not robust enough to
be deployed in a real system [18]. The problem is known
in a literature as Index Selection Problem (ISP). Accord-
ing to [8] it is NP-hard. Note that in practice the space
limit in the ISP is soft, because databases usually grow,
thus the space limit is specified in such a way that
a significant amount of storage space remains free [13].
 In a real life scenario, for thousands database queries
compromising hundreds of tables and thousands of
columns, the search space is huge and grows exponentially
with the size of the input workload. Considered the case of
Index Selection Problem, it can be defined in the following
way: A set of tables is given:

� � ����� � ��� � � �	
��� � (1)�
described by a set of columns included in the tables:
�
� � ������ � � ���
���� � � ����� � � �	��� � � �	�
�	�
� �(2)�

where:
���� is a �-th column of table ��. Each column ����
corresponds to a set of values ������� (tuples set) included
in this column.
 For the set of tables � various queries �� can be
formulated (in SQL these are SELECT queries). These
queries are put against the specified set of columns
��� � �. The result of query �� is the following set:
�

�� �� � ��������������� �� � (3)

�
where:
 !� � !� �"�!#	�$� �" ��" �!	 is a cartesian product of sets
!�� � � !	.
 For a given database %&, it is taken into account that
�� is a result of the following function:

�� � �������� '(�%&�� (4)

where:
��� is a subset of used columns, '(�%&� is a set of opera-
tors available in database %& of which relation describing
query �� is built.
 The time associated with the determination of the set
�� depends on the DB database used (search algorithms,
indexes structures) and adopted set of indexes) � *�����
(where *����� is a power set of ���). It is therefore
assumed that the query execution time �� in given data-
base %&, is determined by the function +����)� %&�. In
short, the value of execution time for query ��, data base
%& and set of indexes) will be define as +��)�.
 In the context of the so-defined parameters, a typical
problem associated with the ISP responds to the following
question:

What set of indexes) � *����� minimizes the query ��
execution time +��)� , -./?

When a multi-component set of queries � � ���� � � �0

is considered, the question takes the following form:

What set of indexes) � *���� minimizes the queries block
Q execution time 1 +��)�2��2 , -./?

3.�Classic index selection approach
Classic index selection approach focuses on an individual
query and tries to find good index or indexes set for tables
in a single query in a given block. Such an approach does
not take into consideration queries in a block as a whole.
By doing so, a database user may expose database to
create excess number of indexes that could be redundant
or not used for more than one query in an examined
block. This could also result in utilizing too much disk
space and time needed for the indexes creation. Finding
a good index group for a large database queries block was
never an easy task and usually users and database admin-
istrators rely on their experience and good practice. In the

Pomiary Automatyka Robotyka nr 2/2013 137

index for the entire queries block. We propose a new
approach by using multi-query SQL block selection. Such
a block consists of tabular relations between queries,
meaning that the number of tables columns used in
a previous query is present in other queries. The proposed
approach could be an alternative to the classic index
selection method, where one common index set can be
found. The grouped queries approach has to be studied for
its effectiveness and authenticity via a series of
numerical tests. Furthermore, in order to compare the
performance of the method, we use commercial tools.
 For previous examples, we suggest to create a pool of
all columns taking part in all queries in a group and build
sub-optimal indexes set for queried tables. Such a task
involves creating a weighted list that will include all the
index candidate query-related columns and their
number of occurrence in the examined queries block:

�K � L������ D��� ����3� D�� ��#��� D�� ��#�#� ?�� ��3�#� D�M (5)�

�
Of course, only �#�# column (marked by the box in (5)) is
a query-related candidate column that could be used for
the index creation. Nevertheless, other columns from
remaining tables could also be revised. In that context, we
suggest to create a composite index for the same table �#
on columns �#�� and �#�#) � FG�#��� ��#�#HI. By doing so,

the user not only speeds up block execution but also saves
significant volume of disk space. With the third test run,
database returned following response times +��)� � D?BE�s,
+#�)� � ?AB@�s, +3�)� � E�s, respectively, decreasing total
execution time of 35 % and saving disk space of 60 %.
This is due to the fact that only an index is used or a full
table scan for non-indexed table resulting in smaller
response times for �� and �#. The database optimizer
does not need to perform an additional read operation
(separate for index and if values not found and separate
for a table). This proves that indexes should be selected
with care.
 Determining the answers to a set of queries can be
improved by creating some indexes.
 Classic index selection focuses on each query individu-
ally and the final indexes set is a sum of indexes sub-sets
for each query.
 We show that groups of queries, one can get better
indexes set if such group is treated as a whole.
 Grouped queries index search can only benefit and has
an advantage over single query search, only if
queries in the group satisfy the condition of mutual
dependence. Queries ��, �#, �3, from previous examples
are dependent so the below statement applies. Such
dependency must be clearly defined.
 In the present case, the dependence set of queries � is
determined by connectivity of hypergraph N���.
 Figures 1 presents an example of a hypergraph for
considered queries.
 In this type of graph, vertices represent the columns
used in queries �, edges connect those vertices that
together create table �O (dashed line hyper edge) or

commercial use, one may find tools that support the index
selection process, such as SQL Access Advisor [6], Toad
and SQL Server Database Tuning Advisor [1].
 Let us consider three examples where a group of three
database queries � � ���� �#� �3
 is given:
��: SELECT * FROM ��, �# WHERE ���� < �#�# AND
���3 = [const],
�#: SELECT * FROM �#, �3 WHERE �#�# = �3�#,
�3: SELECT * FROM �# WHERE �#�� > [const].

Interpretation of this type of queries (according to (4)) is
as follows:
��4 searching for a set of triples: �� � ��5� 6� 7�4�5 �
�������� 6 � ���#�#�� 7 � �����3�8 5 9 6� 7 � :7;/<+=
,
set ��� � ������ �#�#� ���3
.
�#4 searching for a set of pairs: �� � ��5� 6�4�5 �
���#�#�� 6 � ���3�#�8 5 � 6
,
set �#� � ��#�#� �3�#
.
�34 searching for a set: �� � �54�5 � ���#���8 5 � :7;/<+=
,
set �3� � ��#��
.

Tables ��, �#, �3 contain 1*106 records each. No indexes
are built on either table:) � >. With the first test run,
database returned following response times:
+��)� � ?@A@�s, +#�)� � BCDD�s, +#�)� � BAE�s respectively,
resulting in full table scans for each �. Queries � ran on
database Oracle 11.2.0.1 installed on server with
Red Hat Enterprise Linux 6 operating system with 64 GB
memory and ASM used for disk storage.
 The classic approach requires treating every database
query individually. Hence, indexes are built ���� and ���3
on table ��; �#��, �#�# on table �#8 �3�# on table �3.
This kind of indexes are represented by the set
) � FG����� ����3H� G�#�#H� G�3�#H� G�#��HI containing four sets.

Each element (set) of) contains the columns that are used
to build the indexes. For example, the set G����� ���3H
means that we have to build one index for columns
����� ���3.
 The set of indexes) is built for three different tables,
resulting in use of 2 GB of additional disk space. With the
second test run, database returned following response
times +��)� � ?CD?�s, +#�)� � ?EJ@�s, +3�)� � E s respec-
tively. As the response time is better by approximately
10 %, there is still unreasonable disk space used and time
needed for creating 4 large indexes. Creating 4 indexes
forced query optimizer to use them, and instead of
decreasing �� execution time, it got increased. This is
because the optimizer decided to read ���� column index
content first and because it could not find values for ���3
column, it performed a full table scan for table ��.
Examples show that selected indexes may increase the
query execution performance, where in other cases may
have the opposite effect.

4.�Grouped queries approach
In this paper, we focus on related queries group and
because of this relation on the number of indexed
columns. We take into account the search for a good

4.�Grouped queries approach
In this paper, we focus on related queries group and
because of this relation on the number of indexed
columns. We take into account the search for a good

138

NAUKA

related queries �� (solid line hyper edge). For example,
hyper edge connecting vertices ����� ��#�#� ���3 represents
relation with query ��.
 It is assumed that the queries set P is related if
corresponding hypergraph Q�P� is consistent.
 In this context, the group queries indexes set creation
can benefit compared to classic index selection only for
related sets.

Fig. 1. Hypergraph for considered set of queries P
Rys. 1. Hipergraf dla rozważanej grupy zapytań P

 As a counterexample, a group of three database que-
ries �� � ����� �#�� �3�
 is given:

���: SELECT * FROM ��, �# WHERE ���� > ���#,
�#�: SELECT * FROM �#, �3 WHERE �#�� = �3�#,
�3�: SELECT * FROM �R WHERE �R�� > [const].

 Figure 2 presents the example of a hypergraph for
considered queries ��S�This kind of hypergraph is incon-
sistent. For this reason, queries �� are treated as the
unrelated queries.

�
Fig. 2. Hypergraph for considered set of queries P�
Rys. 2. Hipergraf dla rozważanej grupy zapytań P�
 Unrelated queries for the index selection process means
they cannot be treated as a group. In such cases the best
index set is a set determined for each query individually:

)� � FG����� ���#H� G�#��H� G��3�#H� G�R��HI (6)

 A weighted list for �� includes all the index candidate
columns:

�K� � L������ D��� ����#� D�� ��#��� D�� ��3�#� D�� ��R��� D�M (7)�

 One can notice there are no query-related candidate
columns (single column occurrence) that could be used for
the grouped queries index set creation. Each table �� will
have to be indexed separately for each individual
query ��.

5.�Genetic algorithm mechanism
There are different approaches towards index search with
genetic algorithm [GA] use. Some focus on the index selec-
tion for a single query through index configuration change
[14]. Other focus on change of the queries execution plan
[13], which is not robust enough to be deployed in a real
system, because it is based on estimation and not on
a real execution time calculation. We propose an approach
that is based on the analysis of multiple queries block
execution (feature of production systems). Such an ap-
proach allows searching for indexes dedicated for particu-
lar production environment.
 As we pursue to find a set of indexes) � *���� that
minimize queries block � execution time 1 +��)�2��2 ,
-./, we propose to use a genetic algorithm with a con-
stant population size, a constant mutation rate, and no
crossover. We assume that this kind of automatic, self-
adaptive approach finds good block queries indexes in
timely manner. Proposed algorithm consists of four steps:

5.1.� Columns extraction
For each table in queries � we eliminate columns that are
not good candidates for index build (for each database
engine such rules are clearly defined). Next, we create
a sequences of pairs containing chosen columns and num-
bers of their occurrence:

�K � T���U��U� V�U��U��� ���W��W� V�W��W�� � � L��X��X� V�X��XMY (8)

where:
��Z��Z is a �O-th column of table ��Z, 5 � D�[, and
��Z��Z � ��, �� � \ ���0�$� are a set of columns used in
queries � � ���� � � �0
, [is a number of elements �K,
V�Z��Z is a number of occurrences of column ��Z��Z
in queries .
 The sequences (5) and (7) are examples of (8). This
kind of sequence determines the initial population.

5.2.�Population build
Every population of the proposed algorithm is built by
a set number of individuals that are the sequences of
chromosomes corresponding to tables of queries �:

] � � �̂� ^#� � � ^_� (9)

����

�#�� �R��

�3�#���

�#�

�3�
�R

�3

�#

���#
��

���3

�#�� �#�#

�3�#��

�#

�3

�#

�� �3

where:

���� �� vertex representing column ����

���� ���	 �� columns: ����, ���	 belonging to table �O
�O

���� �0�	
�O

�� columns: ����, �0�	 connected by query

Pomiary Automatyka Robotyka nr 2/2013 139

where:
] – a sequence of chromosomes,�
` – number of tables corresponding to queries �,
�̂ – .-th chromosome corresponding to table ��:

�̂ � �a���� a��#� � � a��
b����� (10)

where: a��� � �@�D
 is a gene representing column ���� of
table ��.
 In that context, each chromosome �̂ is a sequence
representing columns of the table �� used in queries �.
The value of a gene a��� determines which columns belong
to the set of indexes), e.g. a value a��� � D means that
column ���� belongs to the set of indexes). For example,
individual] determining the set of indexes) (6) has the
following form:

] � ��D�D�� �D�� �D�� �D�� (11)

where: �̂ � �D�D�, ^# � �D�, ^3 � �D�, ^R � �D� are the
chromosomes corresponding to tables ��� �#� �3� �R respec-
tively. Moreover, each individual] is described by time of
queries � execuiton +�)c� � 1 +��)c��2��2 where)c is the
set of indexes determined by]�S
 We assume that the population of individuals (9)
contains the same number of elements (/ in each
iteration. A starting population contains one individual
]�d determined by the sequence �K and (/ e D individ-
uals as mutations of]�d.]�d are created as a sequence,
where each chromosome �̂ contains only one positive gene
(a gene which corresponds to the column with the maxi-
mum occurrences of columns ��).

5.3.� Iterated evolution process
For the individuals selection we use a simple tournament
selection. In each iteration, we randomly select /(num-
bers of individuals’ pairs from a given population. Among
the elements of pairs we select one individual for which
query block execution time best matches the fitness
function (+�)c� , fgh). The selected sequence] is a new
individual for the next population.
 From a new population, every gene is selected and
mutated (binary state change) with a probability deter-
mined by a set parameter, thus creating a new chromo-
some. We create a new index for table��� for each individ-
ual’s chromosome and for these indexes we measure
� queries block total execution time +�)c�. This closes the
iteration cycle.

5.4.� Stop condition check
We check when to stop the algorithm run. This can be
determined by two following options:
−� when a set goal is achieved: value�+�)c� of best indi-

vidual reaches the given i+ level,
−� after set run time: time of computation exceeds the

given �7 value.

One must note that on number of occasions back regres-
sion may occur (no improvement in population’s total
execution time). In this case, we go one population back
and create a new population.
 The proposed genetic algorithm has been built in the
Java programming environment [21] and implemented on
a production and test databases for both classic and
grouped queries approaches. We chose Java because of the
operation system independence and vary database soft-
ware connection ability (JDBC).
 The next section presents the numeric results for the
presented algorithm.

6.�Experimental tests
In Section 4, we show two examples where the grouped
queries approach may be beneficial for SQL blocks with
related queries, which is blocks of queries that can
be graphically represented by a consistent hypergraph
(see fig. 1).
 Now we use the proposed index driven mechanism for
grouped queries and classic index selection approaches.
In that context we carry out an experiment that involve
index selection for queries block �j represented by the
consistent hypergraph (see fig. 3).
 Analyzed query block �j, consists of three queries
which characterize relations between columns of three
database tables � � ���� �#� �3
, containing D@k rows each.
For experimental purposes, we use Oracle database,
version 10.2.0.3, installed on server with Redhat 6 operat-
ing system with 64 GB memory and ASM used for disk
storage. The queries block �j is presented (using the SQL
language notation) in Table 1.
 We set the algorithm’s initialization parameters as
follows (/ = 6, i+ � ?Al< and �7 � D@R�<. The experi-
mental queries block is examined by three different tests
so that good index group for each query block is found:
−� index selection with use of advisory tools,
−� classic index selection approach,
−� grouped queries index selection approach.

In the first test we use two different index selection advi-
sory tools. One is the Oracle SQL Access Advisor, provid-
ed together with the server database installation package.
Another is TOAD package, developed by Quest company.
Oracle’s software has the ability to search for indexes not
only for individual queries but also for a queries block
(SQL Tuning Set). TOAD tool treats every SQL query
within a group as an individual and indexes are selected
individually, too. For two other tests (classic and grouped
queries approach) we use our own index selection adaptive
algorithm. The results for all three tests we carry out are
shown below:

Test 1: For queries block with recommendations of index
selection advisory tools the block execution time is 267 s.
Test 2: For queries block with recommendations of classic
index selection approach, the block execution time is
253 s.

140

NAUKA

Test 3: For queries block with recommendations
of grouped queries index selection approach, the block
execution time is 245 s.

Based on the above results, differences between advisory
tools, classic and grouped queries approach for blocks
execution times is 22 s (8 %).

The obtained results show that for consistent hypergraph,
the efficiency of the grouped queries approach against
classic index selection approach also increases. It is worth
noting that the commercial advisory tools seem to be not
useful for related block queries. Advisors are unable to
recommend any indexes whatsoever (see tab. 1). As it
seems, for consistent hypergraph the effectiveness of such
tools decrease.

Tab. 1. Database queries Pj and indexes recommendations
Tab. 1. Grupa zapytań Pj i rekomendacje indeksowe

Database queries set with low relations:
m�: SELECT T3.KOL1,T3.KOL2

FROM TEST1 T1,
(SELECT T2.KOL3, T2.KOL5 FROM TEST2 T2, TEST1 T1 WHERE
T2.KOL3=T1.KOL5) T2, TEST3 T3
WHERE T1.KOL5 = T3.KOL4
AND T3.KOL1 = T2.KOL3
AND T3.KOL5 = ANY (SELECT T2.KOL5 FROM TEST2 T2, TEST1 T1
WHERE T2.KOL4=T1.KOL3) ORDER BY 1,2;
m#: SELECT DISTINCT T1.KOL , T1.KOL2 , COUNT(*)

FROM TEST1 T1, TEST3 T3,
(SELECT T2.KOL4, T2.KOL1 FROM TEST2 T2, TEST3 T3 WHERE
T2.KOL3=T3.KOL5) T2
WHERE T1.KOL1 = T2.KOL1 AND T2.KOL4 = T3.KOL4
GROUP BY T1.KOL1, T1.KOL2 ORDER BY 1 DESC;
m3: SELECT DISTINCT T1.KOL2, T2.KOL5, COUNT(2)

FROM TEST2 T2, TEST1 T1, TEST3 T3
WHERE T1.KOL4 = T3.KOL4 AND T1.KOL1 = T2.KOL3
AND T1.KOL5 > ANY (SELECT T2.KOL5 FROM TEST2 T2 WHERE
T2.KOL1=1000) AND (T3.KOL3 > T2.KOL3)
GROUP BY T1.KOL2, T2.KOL5 ORDER BY 1,2 DESC;

Oracle SQL Advisor + TOAD suggestion:
NO INDEXES

Classic index selection approach:

CREATE INDEX k1_col1_col2_idx ON ��(����,����#);

CREATE INDEX k1_col5_idx ON ��(���n);
CREATE INDEX k2_col1_col3_idx ON �#(�#��,��#�3);

CREATE INDEX k2_col3_col4_idx ON �#(�#�3,��#�R);
CREATE INDEX k2_col4_idx ON �#(�#�R);
CREATE INDEX k3_col1_idx ON �3(�3��);

CREATE INDEX k3_col3_idx ON �3(�3�3);
CREATE INDEX k3_col4_idx ON �3(�3�R);

Grouped queries approach:
CREATE INDEX k1_col1_idx ON ��(����);

CREATE INDEX k2_col1_col3_col4_idx ON �#(�#��� �#�3� �#�R);
CREATE INDEX k3_col2_col4_idx ON �3(�3�#� �3�R);

7.�Conclusions
Finding a good index or indexes set for a table is very
important for every relational database that supports
production processes. Not only in terms of performance
but also cost aspects. Indexes can be crucial for a rela-
tional database to process queries with reasonable efficien-
cy, but the selection of them is very difficult.
 Presented examples show that there is a need for find-
ing an automatic index selection mechanism for grouped
queries rather than a classic (single query). Practice shows
that grouped queries index selection gives better results
and enables user to save time needed for index creation.
In our example grouped queries indexes are more effective
than the classic one because queries �j satisfy the group-
ing condition (hypergraph N��j�� is consistent (see fig. 3).
One should note that the experiments we carry out are to
determine indexes that minimize queries blocks execution
time only. What is important in the general case are dif-
ferent parameters such as: index creation cost, number of
indexes and disk storage allocation.

In the presented example we show a genetic algorithm use
for queries block with classic and grouped queries
approach. Proposed algorithm requires six populations
which takes circa 8000 s to finish. Time needed to com-
plete this task is large, however, for databases with
repeating queries block run (as production systems) this is
less important. Indexes selection based on grouped queries
approach may be implemented during production system
operation and indexes may be adjusted with next queries
block run.
 Our current works focus on the grouped queries index
selection method with use of genetic algorithm that ana-
lyzes database queries, suggests indexes’ structure and
tracks indexes influence on the queries’ execution time.
We work on the system that will be used in an attempt to
find better indexes for a critical part of long-running da-
tabase queries in automatic production database environ-
ment. Buffering queries with good indexes together with
their total execution time is a starting point for broader
searches in future. Simple test presented in this article
proves effectiveness of this method.

Pomiary Automatyka Robotyka nr 2/2013 141

5.� Comers D., The Ubiquitous B-Tree, “Computing Sur-
veys”, 11 (2), DOI:10.1145/356770.356776,
123–137.

6.� Dageville B., Das D., Dias K., Yagoub K., Zait M.,
Ziauddin M.. Automatic SQL Tuning in Oracle 10g,
Proceedings of the 30th International Conference on
Very Large Databases, 2004.

7.� Dawes C., Bryla B., Johnson J., Weishan M., OCA
Oracle 10g Administration I, Sybex, 2005, 173.

8.� Finkelstein S., Schkolnick M., Tiberio P., Physical
database design for relational databases, ACM Trans.
Database Syst. 13(1), (1988), 91–128.

9.� Frank M., Omiecinski M., Adaptive and Automated
Index Selection in RDBMS, Proceedings of EDBT,
1992.

10.�Gupta H., Harinarayan V., Rajaraman A., Ullman
J.D., Index Selection for OLAP, In Proceedings of the
Internatoinal Conference on Data Engineering,
Birmingham, U.K., April 1997, 208–219.

11.�Knuth D., The Art of Computer Programming,
Vol. 3, Sorting and Searching, Addison-Wesley, Read-
ing, Mass., 1973.

12.�Knuth D., Sorting and Searching, The Art of
Computer Programming, Vol. 3 (Second ed.),
Addison-Wesley.

13.�Kołaczkowski P., Rybiński H., Automatic Index
Selection in RDBMS by Exploring Query Execution
Plan Space, Studies in Computational Intelligence,
Vol. 223, Springer, 2009, 3–24

14.�Kratica J., Ljubic I., Tosic D., A Genetic Algorithm
for the Index Selection Problem, EvoWorkshops'03,
Proceedings of the 2003 International Conference on
Applications of Evolutionary Computing, 2003.

15.�Lehman P.L., Efficient locking for concurrent
operations on B-trees, ACM Transactions on
Database Systems (TODS), Vol. 6, Iss. 4, Dec. 1981,
650–670.

16.�Maggie Y., Ip L., Saxton L.V., Vijay V. Raghavan, On
the Selection of an Optimal Set of Indexes, IEEE
Transactions on Software Engineering, 9(2), March
1983, 135–143.

17.�Schkolnick M., The Optimal Selection of Indices for
Files, “Information Systems”, Vol.1, 1975.

18.�Schnaitter K., On-line Index Selection for Physical
Database Tuning, ProQuest, UMI Dissertation Pub-
lishing, 2011.

19.�[http://www.chiark.greenend.org.uk/~sgtatham/algorit
hms/cbtree.html] – Tatham S., Counted B-Trees.

20.�Wedekind H., On the selection of access paths in
a data base system. In Data Base Management,
Klimbie J.W., Koffeman K.L., Eds. North-Holland,
Amsterdam, 1974, 385–397.

21.�[http://www.oracle.com/us/technologies/java/overvie
w/index.html].

Fig. 3. Hypergraph for set of queries Pj
Rys. 3. Hipergraf grupy zapytań Pj

�#j �

�3j �

�#

��

�3

�����

���#�

�#���

���n�

���R�

���3�

�#�3�

�#�R�
�#�n�

�3���

�3�3�

�3�#�

�3�R�

�3�n�

��j �

������	�

����� ��
����
��������������������������
����� ���	� �� �������	����������	���������������������O��O�
����� �0�	� �� �������	��������0�	���������������������Oj �

The developed system is scalable: there is a potentiality of
combining smaller queries’ blocks into larger series and
finding better solution based on execution history.

References
1.� Agrawal S., Chaudhuri S., Kollar L., Marathe A.,

Narasayya V., and Syamala M.. Database Tuning Ad-
visor for Microsoft SQL Server 2005, [in:]
Proceedings of the 30th International Conference on
Very Large Databases, 2004.

2.� Back T., Evolutionary algorithms in theory and
practice: evolution strategies, evolutionary
programming, genetic algorithms, Oxford University
Press Oxford, UK, 1996.

3.� Bruno N., Chaudhuri S., Automatic physical database
tuning: a relaxation-based approach, [in:] Proceedings
of the 2005 ACM SIGMOD international conference
on Management of Data, ACM New York, NY, USA,
2005, 227–238.

4.� Chaudhuri S., Narasayya V., An efficient
Cost-Driven Index Selection Tool for MS SQL Server,
Very Large Data Bases Endowment Inc, 1997.

142

NAUKA

Grzegorz Bocewicz, PhD
Grzegorz Bocewicz obtained his MSc
degree in Telecommunications from the
Koszalin University of Technology, Poland,
and a PhD degree in Computer Sciences
from the Wrocław University of Technol-
ogy, Poland in 2006 and 2007, respec-
tively. Currently he is employed by in the
Dept. of Computer Science and Management as associate
professor. He is the author and co-author over 100 manuscripts
including two book, international journals, and conference
proceedings. His research interests are in the areas of the opera-
tional research, decision support systems, constraints program-
ming techniques.
e-mail: bocewicz@ie.tu.koszalin.pl

Mechanizm wyznaczania indeksów dla grupy
zapytań SQL

Streszczenie: Autorzy podejmują się problemu automatycznej
minimalizacji czasu odpowiedzi bazy danych na zadaną grupę
zapytań SQL poprzez poprawny dobór indeksów dla systemów
produkcyjnych. Głównym naszym celem jest traktowanie zapytań
jako grupy i szukanie odpowiednich indeksów dla całej grupy
a nie dla pojedynczego zapytania. Przedstawiamy warunki które
musi spełniać grupa zapytań. Proponujemy użycie algorytmu
genetycznego do poszukiwania indeksów w testach doświad-
czalnych. Prezentujemy wyniki testów eksperymentalnych jako
uzasadnienie użycia proponowanego podejścia.

Słowa kluczowe: indeks, algorytm genetyczny, baza danych,
grupa indeksów

Radosław Boroński, MSc
Radosław Boroński received his MSc
degree in Computer Science and Infor-
mation Technology at Technical Universi-
ty of Szczecin in 2002. Currently he is
a doctoral student of Koszalin University
of Technology, researching methods of
automatic grouped queries indexes selec-
tion for relational databases and data
warehouses. In professional career, he is a senior Oracle data-
base administrator with Acxiom corporation, administrating large
databases of General Motors Company.
e-mail:radoslaw.boronski@ie.tu.koszalin.pl

