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Abstract: The paper is devoted to the elastostatic calibration of 
industrial robots, which are used for precise machining of large-
dimensional parts made of composite materials. In this techno-
logical process, the interaction between the robot and the work-
piece causes essential elastic deflections of the manipulator 
components that should be compensated by the robot controller 
using relevant elastostatic model of this mechanism. To 
estimate parameters of this model, an advanced calibration 
technique is applied that is based on the non-linear experiment 
design theory, which is adopted for this particular application. 
In contrast to previous works, it is proposed a concept of the 
user-defined test-pose, which is used to evaluate the calibration 
experiments quality. In the frame of this concept, the related 
optimization problem is defined and numerical routines are 
developed, which allow to generate optimal set of manipulator 
configurations and corresponding forces/torques for a given 
number of the calibration experiments. Some specific kinematic 
constraints are also taken into account, which insure feasibility 
of calibration experiments for the obtained configurations and 
allow avoiding collision between the robotic manipulator and 
the measurement equipment. The efficiency of the developed 
technique is illustrated by an application example that deals with 
elastostatic calibration of the serial manipulator used for robot-
based machining.

Keywords: industrial robot, elastostatic calibration, experiment 
design, industry-oriented performance measure, test-pose based 
approach

1. Introduction

In the usual engineering practice, the accuracy of an anth-
ropomorphic manipulator depends on many factors. In 
accordance with [1, 2], the main sources of robot positio-
ning errors can be divided into two main groups: geometri-
cal (link lengths, assembling errors, errors in the joint zero 
values et al.) and non-geometrical ones (compliant errors, 
measurement errors, environment factors, control errors, 
friction, backlash, wear et al.). For the industrial manipu-
lators, the most essential of them are related to the manu-
facturing tolerances leading to the geometrical parameters 
deviation with respect to their nominal values (the geo-
metrical errors) as well as to the end-effector deflections 
caused by the applied forces and torques (the complian-
ce errors). It is worth mentioning that these error sources 

may be either independent or correlated, but, in practice, 
they are usually treated sequentially, assuming that they 
are statistically independent.

Usually, for the industrial applications where the exter-
nal forces/torques applied to the end-effector are relati-
vely small, the prime source of the manipulator inaccu-
racy is the geometrical errors. As reported by several au-
thors [3], they are responsible for about 90 % of the to-
tal position error. These errors are associated with the 
differences between the nominal and actual values of the 
link/joint parameters. Typical examples of them are the 
differences between the nominal and the actual length of 
links, the differences between zero values of actuator co-
ordinates in the real robot and the mathematical model 
embedded in the controller (joint offsets) [4]. They can 
be also induced by the non-perfect assembling of different 
links and lead to shifting and/or rotation of the frames 
associated with different elements, which are normally as-
sumed to be matched and aligned. It is clear that the er-
rors in geometrical parameters do not depend on the ma-
nipulator configuration, while their effect on the position 
accuracy depends on the last one. At present, there exi-
sts various sophisticated calibration techniques that are 
able to identify the differences between the actual and 
the nominal geometrical parameters [5–9]. Consequently, 
this type of errors can be efficiently compensated either 
by adjusting the controller input (i.e. the target point co-
ordinates) or by straightforward modification of the geo-
metrical model parameters used in the robot controller.

In some other cases, the geometrical errors may be 
dominated by non-geometrical ones that may be caused 
by influences of a number of factors [10, 11]. However, in 
the regular service conditions, the compliance errors are 
the most significant source of inaccuracy. Their influence 
is particularly important for heavy robots and for mani-
pulators with low stiffness. For example, the cutting for-
ces/torques from the technological process may induce 
significant deformations, which are not negligible in the 
precise machining. In this case, the influence of the com-
pliance errors on the robot position accuracy can be even 
higher than the geometrical ones. 

Generally, the compliance errors depend on two main 
factors: (i) the stiffness of the manipulator and (ii) the 
loading applied to it. Similar to the geometrical ones, 
the compliance errors highly depend on the manipula-
tor configuration and essentially differ throughout the 
workspace [12]. So, in order to obtain correct prediction 
of the robot end-effector position, the efficient complian-
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ce errors compensation should be applied [13]. One way 
to solve this problem is to improve the accuracy of the 
stiffness model by means of elastostatic calibration. This 
procedure allows to identify the stiffness parameters from 
the redundant information on the robot end-effector po-
sition provided by the measurements, where the impacts 
of associated measurement noise on the calibration re-
sults have to be minimized by proper selection of measu-
rement configurations.

However, currently most of the efforts have been made 
for kinematic calibration, only few works directly address 
the issue of elastostatic calibration and its influence on 
the robot accuracy [14]. In this area, using various mani-
pulator configurations for different measurements seems 
to be also attractive and perfectly corresponds to some 
basic ideas of the classical design of experiments theory 
[15] that intends using the factors that are differed from 
each other as much as possible. In spite of potential ad-
vantages of this approach and potential benefits to im-
prove the identification accuracy significantly, only few 
works addressed to the issue of the best measurement 
pose selection [16–19]. Hence, the problem of selection 
of the optimal measurement poses for elastostatic para-
meters calibration requires additional efforts. This pro-
blem can be treated as finding the strategy of determi-
ning a set of optimal measurement poses within the re-
achable joint space that minimize the effects of measu-
rement noise on the estimation of the robot parameters. 
It should be mentioned that the end-effector location as 
well as its deflection under the loading are described by 
a non-linear set of functions. However, the classical re-
sults of the identification theory are mostly obtained for 
very specific models (such as linear regression). Therefo-
re, they cannot be applied directly and an additional en-
hancement is required.

One of the key issues in the experiment design theory 
is the comparison of different plans of experiment (i.e. 
sets of configurations and corresponding loadings). In the 
literature, in order to define the optimal plans of expe-
riments, numerous quantitative performance measures 
have been proposed. They allow to define the optimiza-
tion problem (either multi-objective or single-objective), 
whose solution yields the desired set of measurement po-
ses [20–24]. However, all the existing performance measu-
res have their limitations that affect the calibration accu-
racy in different manners. As a result, they do not entire-
ly correspond to the industrial requirements. 

In this paper, the problem of optimal design of the ela-
stostatic calibration experiments is studied for the case 
of serial anthropomorphic manipulator, which obviously 
does not cover all architectures used in practice. Never-
theless, it allows us to derive very useful analytical expres-
sions and to obtain some simple practical rules defining 
optimal configurations with respect to the calibration ac-
curacy. In contrast to other works, a new criterion is pro-
posed that evaluates the quality of compliance errors com-
pensation based on the concept of manipulator test-po-
se. The proposed criterion has a clear physical meaning 
and is directly related to the robot accuracy under the 
task load. So, it aims at improving the efficiency of com-
pliance errors compensation via proper selection of me-
asurement poses.

2. Problem of elastostatic calibration

The elastostatic properties of a serial robotic manipulator 
[12] are usually defined by the Cartesian stiffness matrix 

CK , which is computed as 

 
1

Cè
T− −=K J KJ  (1)

Where J is the Jacobian matrix with respect to the joint 
angles q, and qK  is a diagonal matrix that aggregates the 
joint stiffness values.

In order to describe the linear relation between the en-
d-effector displacement and the external force, the stiff-
ness model of this manipulator can be rewritten as follows

 
TΔ = qt J k J W  (2)

where ( , )T T TΔ = Δ Djt p  is the robot end-effector displa-
cement (position Δp and orientation Dj ) caused by the 
external loading W, which includes the force F and torque 
T applied to the robot end-effector; k  is the joints com-
pliance matrix that is treated as an unknown below and 
should be identified from the calibration experiments.

In the scope of this paper, the following assumptions 
concerning the manipulator model and the measurement 
equipment limitations are accepted:

A1: It is assumed that the geometric parameters are 
well calibrated. So, for the unloaded mode (W = 0), the 
vector q is equal to the nominal value of the joint angles 
q . However, for the case when the loading is not equal 
to zero ≠W , the joint angles include deflections, i.e. 

= + Δq q q , where Δq  is the vector of joint displace-
ments due to the external loading W. 

A2: It is assumed that each calibration experiment pro-
duces three vectors { , , }i i iΔp q W , which define the displa-
cements of the robot end-effector, the corresponding joint 
angles and the external wrenches respectively, where i is 
the experiment number. So, the calibration procedure may 
be treated as the best fitting of the experimental data 
{ , , }i i iΔp q W  by using the stiffness model that can be so-
lved using the standard least-square technique.

A3: In practice, the calibration includes measurements 
of the end-effector Cartesian coordinates with some errors, 
which are assumed to be i.i.d (independent identically di-
stributed) random values with zero expectation and stan-
dard deviation �. Because of these errors, the desired va-
lues of θk  are always identified approximately. 

Using these assumptions and the above defined notation, 
the problem of interest can be defined as follows:

Problem: To propose a technique for selecting the set 
of joint variables iq  and corresponding external wrench 

iW  for the elastostatic calibration of industrial robot that 
leads to the accuracy improvement for the given technolo-
gical process.

Usually, the performance measures that evaluate the qu-
ality of the calibration plans are based on the analysis of 
the covariance matrix of the identified parameters, all ele-
ments of which should be as small as possible. However, in 
robotics, the stiffness parameters ( 21, ,...k k ) have different 
influences on the end-effector displacements; moreover, the-
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ir influence varies throughout the workspace. To overcome 
this difficulty, it is assumed that:

A4: the “calibration quality” is evaluated for the so-cal-
led test configuration 0 0{ , }q W , which is given by a user 
and for which it is required to have the best positioning 
accuracy under the external loading.

To obtain the optimal calibration plan of experiment for 
a typical industrial manipulator, two sub-problems should 
be considered: (i) to propose a performance measure for 
comparing different plans of experiments that are adopted 
to the elastostatic parameters calibration and are related 
to the robot accuracy under the task loading; (ii) to find 
optimal configurations of the manipulator for the elasto-
static parameters calibration that provide the best com-
pliance error compensation. 

3. Influence of measurement errors

For computational convenience, the linear relation where 
the desired parameters are arranged in the diagonal matrix 

è 1 2( , ,...)diag k k=k  should be rewritten in the following 
form

 i iΔ =t A k  (3)

where the vector k collects the joint compliances that are 
extracted from matrix θk . Here, the matrix iA  is defined 
by the columns of Jacobian J and the external force F and 
is expressed as

 1 1 ,... 1, ), (T T
i i i i ni ni i i m⎡ ⎤= =⎣ ⎦WA WJ J J J

 
(4)

where niJ  is the n-th column vector of the Jacobian matrix 
for the i-th experiment, m is the number of experiments. 
Using the identification theory, the joint compliances can 
be obtained from eq. (3) using the least square method, 
which minimizes the residuals for all experimental data. 
The corresponding optimization problem 

 ,
1

( ) ( ) min
i i

m
T

i i i i
i =

− Δ − Δ →∑ q F
A k t A k t  (5)

provides the estimate of the desired parameters, which can 
be presented as

 

1

1 1

ˆ ·
m m

T T
i i i i

i i

−

= =

⎛ ⎞ ⎛ ⎞
= Δ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑ ∑k A A A t  (6)

However in practice, only translational deflections are 
measured directly. So, in order to reduce computational 
efforts, it is reasonable to eliminate equations that cor-
respond to the rotational deflections from eq. (3) and to 
rewrite it as

 
( )p

i iΔ =p A k  (7)

where the matrix ( )p
iA  corresponds to the position deflec-

tions only. For comparison, the original matrix from eq. (3) 
includes an additional block ( )

i
ϕA  corresponding to the 

rotational deflections:

 

( )
3

6 ( )
3

p
i n

i n
i n
ϕ

×
×

×

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

A
A

A
 (8)

So, eq. (3) should be rewritten in the following form 

 

1
( ) ( ) ( )

1 1

ˆ ·
T T

m m
p p p

i i i i
i i

−

= =

⎛ ⎞ ⎛ ⎞
= Δ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑ ∑k A A A p  (9)

It is obvious that errors cannot be avoided in the cali-
bration experiments. These errors mainly caused by the 
accuracy of the positioning measurement system while 
measuring the end-effector position can be expressed as 

  (10)

where 0k  is the true value of the unknown parameter and 

ie  is the measurement errors in the i-th experiment. 
Usually the errors are assumed to be independent identi-
cally distributed (i.i.d.) with zero expectation E( )i =e 0  
and the variance 2E( )T

i i σ=e e . 
Using eq. (10) the estimate of the compliance vector k̂  

can be presented as

 
 (11)

where the first term corresponds to the expectation ˆE( )k  
(it means that the estimate (9) is unbiased). 

It can be also proved that the covariance matrix of com-
pliance parameters k̂  that defines the identification accu-
racy can be expressed as

1
( ) ( )

1

1
( ) ( ) ( ) ( )

1 1

ˆcov( )

E

T

T T

m
p p

i i
i

m m
p T p p p

i i i i i i
i i

−

=

−

= =

⎛ ⎞
= ⎜ ⎟⎝ ⎠

⎛ ⎞ ⎛ ⎞
× ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑

∑ ∑e e

k A A

A A A A

 (12)

and, taking into account that ( ) 2E T
i i σ=ee ,

, 

it can be sim-
plified to

 

1
2 ( ) ( )

1

ˆcov( )
T

m
p p

i i
i

σ
−

=

⎛ ⎞
= ⎜ ⎟⎝ ⎠∑k A A  (13)

where σ  is the s.t.d. of the measurement errors. So, for 
the considered problem, the impact of the measurement 
errors is defined by the matrix sum ( ) ( )

1

Tm p p
i ii =∑ A A  that is 

also called the information matrix.
Obviously, in order to have the smallest dispersion of 

the identification errors, it is required to have the covar-
iance matrix elements as small as possible. It is a multio-
bjective optimization problem, but the minimization of 
one element may increase others. In the literature, in or-
der to reduce this problem to a monobjective one, nume-
rous scalar criteria have been proposed. It should be men-
tioned that all these criteria provide rather different opti-
mal solutions. Hence, it is quite important to select a pro-
per optimization criterion that ensures the best position 
accuracy of the manipulator under the loading. For this re-
ason, in the next section a new test-pose based approach 
that ensures the best end-effector accuracy under external 
loading is proposed.

4. Test-pose-based approach 

The main idea of the calibration experiment planning is 
to select proper configurations and corresponding exter-
nal loadings (which will be called as plan of experiments) 
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that ensure the best identification accuracy for the desired 
parameters. To develop this idea, let us introduce several 
definitions that are referred below to as D1, D2 and D3.

D1: Plan of experiments is a set of robot configurations 
and corresponding external loadings that are used for the 
measurements of the end-effector displacements and fur-
ther identification of the elastostatic parameters. 

As follows from previous works (mainly devoted to the 
geometrical calibration), proper selection of the plan of 
experiments allows us to achieve an essential reduction of 
the measurement error impact. However, there is an open 
question here that is related to the numerical evaluation 
of this impact. Corresponding expression can be treated as 
the objective function in the optimisation problem, which 
produces the desired plan of experiments. It should be 
mentioned that for linear models this problem has been al-
ready carefully studied. In particular, in classical regres-
sion analysis, there are several conventional optimality cri-
teria that operate with the trace and/or determinant of 
the covariance matrix or its inverse (so called information 
matrix). The most commonly used among them are pre-
sented in 0 and in tab. 1 conventional design of experi-
ments [20–24] they are known as A-, D-, E-, G-optimality 
cIn addition, in robot geometrical calibration that opera-
tes with non-linear models, some specific performance me-
asures are used, which are based on the singular value de-
composition of the kinematic Jacobian. This approach can 
be also adopted for the elasto-static calibration, where the 
SVD should be applied to the matrix ( )pA , which conta-
ins both the kinematic Jacobian and the external loading 
vector. More details concerning these performance measu-
res are presented in the second part of tab. 1.

It should be mentioned that all optimization criteria, 
which are presented in tab. 1, do not evaluate directly the 
measurement error impact on the robot accuracy in the tech-
nological application studied here. For this reason, in order 
to address the industrial requirements directly, it is propo-
sed to estimate the quality of calibration experiment via the 
accuracy of the compliance error compensation. From sta-
tistical point of view, this approach can be treated as mini-
mization of the prediction error. More strictly, an adopted 
performance measure is defined as follows:

D2: The accuracy of the compliance error compensation 
r  is the distance between the desired end-effector location 
0t  and its real location under external loading Ft  achieved 

after application of the compliance error compensation tech-
nique.

Here, it is assumed that the desired end-effector location 
0t  is given or can be computed for given configuration 0q  

using manipulator direct geometrical model ( )...g  as 
( )0 0g=t q . Since the external loading W causes the end-

effector deflection with respect to the desired location, the 
compliance error compensation algorithm provides the modi-
fied values of the actuated coordinates 0 += Δq q q  that al-
low us to locate the end-effector at the given location 0t .
The letter can be expressed by the following equation

 
1

0 0 C( )g −Δ= + +qt Kq W  (14)

where CK  is the Cartesian stiffness matrix computed for 
the configuration 0q .

Using linear approximation (assuming that the deflec-
tions are small enough), assuming that the Jacobian ma-
trix is not singular the compliance error compensation al-
gorithm can be presented as

 0
1

0 C
1− −= − Jq q K W  (15)

where 0J  is the kinematic Jacobian computed for the 
same configuration 0q .

Geometrical interpretation of this algorithm is presen-
ted in 0, where three manipulator configurations are pre-
sented (the desired one as well as the configurations under 
the loading with and without compensation). In the case 
when the deflections are significant, the non-liner complian-
ce error compensation technique should be applied [12]. 

Tab. 1. Objective function for existing approaches in calibration 
experiment design

Tab. 1. Funkcja obiektywna dla podejść do problemu istnieją-
cych w projekcie eksperymentu kalibracji

Approach   Objective function
Application: Linear Regression

A-optimality
,

trace(cov( )) min
i i

→
q W

k

D-optimality 1

,
det(cov( ) ) max

i i

− →
q W

k

E-optimality 1

,
min{eig(cov( ) )} max

i i

− →
q W

k

G-optimality
,

max{diag( )} min
i i

→
q W

k

Application: Robot Calibration

Product of singular values 1O 1 ,
... max

i i

s
sσ σ →

q W

Condition number 2O 1 ,
min

i i
sσ σ →

q W

Minimum singular value 3O ,
min

i i
sσ →

q W

Noise amplification index 4O
2

1 ,
max

i i
sσ σ →

q W

Inverse sum of singular values 5O ,
1 min

i i
ii

σ →∑ q W

1σ , sσ  maximum and minimum singular values

Fig. 1. Geometrical interpretation of the compliance error com-
pensation technique

Rys. 1. Interpretacja geomatryczna techniki kompensacji błędu 
podatności

Target Point

Before compensation

After compensation

Desired
configuration

1
C
−Δ =t K W

W

minρ →

x

y

( )0 0g=t q

W

Ft
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It should be noted that the compliance error compensa-
tion algorithm (15) includes the compliance matrix 1

C
−K , 

which is the function of the stochastic variables ie  descri-
bing the measurement errors. For this reason, the desired 
compensation can be achieved “on average” only, while each 
particular case may produce some difference between the 
desired and compensated end-point locations (see fig. 1).

Using notations from the previous section, the distance 
between the target and achieved locations may be compu-
ted as the Euclidean norm of ( )·pδ δ=p A k , where 

0
ˆδ = −k k k  is the difference between the estimated and 

true values of the robot stiffness parameters. It can be easi-
ly proved that the above presented algorithm (15) provi-
des an unbiased compensation, i.e. 

 ( )E δ =p 0  (16)

and the standard deviation of the compensation error 
2 E( )Tρ δ δ= p p  can be expressed as

 ( )2 ( ) ( )E
TT p pρ δ δ= k A A k  (17)

Taking into account geometrical meaning of ρ , this va-
lue can be used as a numerical measure of the compliance 
error compensation quality (and also as a quality measu-
re of the related plan of calibration experiments). 

It is obvious that because of non-homogeneity of the 
manipulator properties within the workspace, the accura-
cy of the compliance error compensation highly depends 
on the target point  location 0t  and the applied external 
loading W. For this reason, it cannot be evaluated in ge-
neral for the whole robot workspace and variety of exter-
nal loadings. To overcome this difficulty, it is proposed here 
to assess the compliance error compensation accuracy for 
some given manipulator configuration and typical external 
loading. This idea is formalized in the notion of the “test 
pose” defined below:

D3: The test-pose is the set of the robot configuration 
0q and corresponding external loading 0W  for which it is 
required to achieve the best compliance error compensa-

tion (i.e. 2
0 minρ → ). 

Below, the test pose will be defined via the matrix ( )
0
pA ,

which is computed using eg. (4). In practice, the values of 
0q  and 0W  are provided by the user and usually corre-

spond to a typical robot posture and cutting force for con-
sidered technological application. From this point of view, 

0ρ  is treated as a measure of the robot accuracy in the 
machining process.

In the frame of the adopted notations, the proposed per-
formance measure 2

0ρ  that evaluates the efficiency to com-
pensate the compliance errors for the given test pose can 
be expressed as

 ( )2 (
0 0

) ( )
0 E

TT p pρ δ δ= k A A k , (18)

where 0
ˆδ = −k k k  is the elastostatic parameters estima-

tion error caused by the measurement noise. This expres-
sion can be simplified by presenting the term Tδ δp p  as 
the trace of the matrix Tδ δp p , which yields 

 
( )( )2 ( )

0 0
)

0
(trace E

Tp T pρ δ δ= A k k A  (19)

Further, taking into account that E( )Tδ δk k  is the cova-
riance matrix of desired parameters estimates k̂ , the pro-
posed performance measure (18) can be presented in the 
final form as 

 

1
2 2 ( ) ( ) ( ) (
0

1
0 0

)trace
T T

m
p p p p

i i
i

ρ σ
−

=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑A A A A  (20)

As follows from this expression, the proposed perfor-
mance measure 2

0ρ  can be treated as the weighted trace 
of the covariance matrix ˆcov( )k , where the weighting co-
efficients are obtained using the test pose. It has obvious 
advantages compared to previous approaches, which ope-
rate with “pure” trace of the covariance matrix (see tab. 1) 
and involve straightforward summing of the covariance ma-
trix diagonal elements, which may be of different units 
(corresponding to rotational and translational complian-
ces, for instance). It should be noted that for the geome-
trical calibration, a similar approach has been used in [25].

Based on this performance measure, the calibration 
experiment design can be reduced to the following opti-
mization problem 

 

1
( ) ( )
0 0 { , }

1

trace min
T

i i

m
p T p

i i
i

−

=

⎛ ⎞⎛ ⎞
→⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ q F
A A A A  (21)

subject to

 max, 1..i F i m< =F  (22)

whose solution gives a set of the desired manipulator con-
figurations and corresponding external loadings. It is evi-
dent that its analytical solution can hardly be obtained and 
a numerical approach is the only reasonable one. 

Hence, the proposed above test-pose-based approach 
and related optimization problem ensure low values of the 
covariance matrix elements and allows to combine multi-
ple objectives with different units in a single scalar objec-
tive. An application of this approach for the design of the 
calibration experiments is illustrated in the next sections. 

5. Calibration experiment design for 
3 d.o.f. manipulator

Let us apply the developed technique to the calibration 
experiment design for the 3-link anthropomorphic manip-
ulator assuming that the links are rigid and the compli-
ance is caused by the actuated joints (fig. 2). Its geometri-
cal model is described by the equations

 

( )
( )

2 2 3 23 1

2 2 3 23 1

1 2 2 3 23

cos cos

cos cos

cos

sin
sin sin

x l l

y l l

q q q

q
z l l l

q q
q q

=

=
= +

+

+
+

 (23)

where 1 2 3, ,l l l  are the link lengths, 1 2 3, ,q q q  are the joint 
angles that define the manipulator configuration, and for pre-
sentation convenience the sum 2 3q q+  is denoted as 23q .
It is assumed that this manipulator should achieve the 
highest precision for a prescribed task in the configuration 

0 0 0
1 2 30 ( , , )q q q=q  under the payload 0

0
0 0( )x y z

TF F F=F ,
 which is treated as a test pose. Besides, it is also assumed 
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that the geometrical model is accurate, but the elastosta-
tic parameters (the joint compliances 1 2 3, ,k k k ) should be 
identified. 

For this manipulator, the Jacobian matrix at the test 
pose can be written as 

 

1,0 1,0 3 23,0 1,0

0 1,0 1,0 3 23,0 1,0

3 23

0 0

0 ,0

0 0s c s c
c s s s

c0

S S

C C

C

l l l
l l l

l l

⎡ ⎤− − −
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

J  (24)

where 

 2 2,0 3 23,0 2 2,0 30 23,0 0;c c s sC Sl l l l l l+ += =  (25)
and 

 

0 0 0
1 2 23

0 0 0
1 2

1,0 2,0 23,0

1,0 2 23,0 23,0

s s s

c

sin ; sin ; sin

cos ; cosc ; cosc

q q q
q q q

= = =

= = =
 (26)

Using this expression, the matrix )
0
(pA  for the test con-

figuration can be presented as follows
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In order to reduce the number of optimization variables 
(some of them are obviously redundant), it is reasonable to 
consider calibration configurations with 1iq  equal to zero 
(here, the subscript “i” defines the experiment number). So, 
the Jacobian for the i-th experiment can be simplified to 
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c c
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where 11, s ns i ii q= , 11, c sc o ii q= , 22, s ns i ii q= , 22, c sc o ii q= , 
223, 3ss ini iq= , 223, 3cc osi iq= . Another redundant variable 

is xiF , it can be taken into account by ziF  and angle 2iq . 
Therefore, without loss of generality, the force iF  can 

take the form 

 max maxcos(0 ) sin( ) T
i i iF Fα α= ⎡ ⎤⎣ ⎦F  (30)

where maxF  defines the force magnitude, which is suppo-
sed to be the same for all experiments and the angle iα  
defines the force orientation in the yz plane. Under such 
assumptions, the term yiF  causes deformations in the first 
joint and the term ziF  causes deformations in the second 
and the third joints. 

Using (29) and (30) the matrix ( )p
iA , defined in eq. (4), 

for the i-th experiment can be expressed as
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where Cil  and Sil  can be computed similar to (25), 
2

1 3 23 23c s sini i ia l α−= , . 2 2
2 3 23c sini ia l α= . So, the infor-

mation matrix can be presented as
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where m is the number of experiments and 11 22 33 23, , ,a a a a  
are expressed as
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Hence, for the considered manipulator, the covariance 
matrix cov(k) can be expressed as
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where ( )2
ma

2 2
11 22 33 23x/ ( )F a a a aη σ= − .

Finally, the optimization problem  (20) is reduced to
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where the coefficients 1 2 3 4, , ,dd d d  are defined by the test 
configuration 0 0 0

1 2 30 ( , , )q q q=q  and the external loading 

Fig. 2. 3-link anthropomorphic manipulator
Rys. 2. Manipulator antropomorficzny o 3 przegubach
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0
0

0 0[ ]x y z
TF F F=F . These coefficients can be computed 

via the columns of the matrix ( )
0
pA  as 
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which leads to 
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This optimization problem has been solved numerically for 
one, two, three and four measurements of the end-effector de-
flections under the test loading for the following parameters:  
l1 = 0.75 m, l2 = 1.25 m, l3 = 1.10 m, q0 = (0°, 60°, –45°), 
F0 = Fmax[0, .29, –0,96]T. The results are summarized in 
tab. 1. They include the performance measure �0, the ca-
libration configurations and the identification accuracy for 
the joint stiffness parameters. For comparison purposes, the 
results have been obtained using three different plans of ca-
libration experiments: (i) calibration in the test configura-
tion, (ii) calibration in the optimal configuration that has 
been obtained for the case of one (and two for the case of 
four calibration experiments) experiment and (iii) calibra-
tion in the optimal configurations that have been obtained 
using eq. (35). 

The obtained results show that the proposed test-pose-
based approach improves the efficiency of the compliance 
errors compensation by a factor of two comparing to cali-
bration in the test configuration. Besides, it improves the 
identification accuracy of the joint compliances, so obta-

Tab. 2.  Calibration of elastostatic parameters using different 
plans of experiments 

Tab. 2.  Kalibracja parametrów elastostatycznych z użyciem róż-
nych planów

Case 
 studies

Performance  
measure 

 2
0ρ

Calibration configuration Identification accuracy, [rad/N m]

2q 3q α 1kδ 2kδ 3kδ

Test Conf. 3.00 s2 60.0° 45.0° –73.3° 1.22 s 0.70 s 2.19 s

Opt.1 Conf. 1.92 s2 43.2° –57.3° 22.9° 0.66 s 0.52 s 1.81 s

2×Test Conf. 1.50 s2 60.0° 45.0° –73.3° 0.86 s 0.49 s 1.55 s

2×Opt.1 Conf. 0.96 s2 43.2° –57.3° 22.9° 0.47 s 0.37 s 1.28 s

Opt.2 Conf. 0.80 s2 5.5° 
93.1°

–6.8°
–101.2°

26.3° 
3.3° 0.41 s 0.30 s 0.96 s

3×Test Conf. 1.00 s2 60.0° 45.0° –73.3° 0.71 s 0.40 s 1.27 s

3×Opt.1 Conf. 0.64 s2 43.2° –57.3° 22.9° 0.38 s 0.30 s 1.05 s

Opt.3 Conf. 0.51 s2
173.3° 
–7.1° 
–49.3°

19.3° 
14.7° 

–125.0°

0.5° 
–24.9° 
2.1°

0.32 s 0.23 s 0.83 s

4×Test Conf. 0.75 s2 60.0° 45.0° –73.3° 0.61 s 0.35 s 1.10 s

4×Opt.1 Conf.(2a) 0.48 s2 43.2° –57.3° 22.9° 0.33 s 0.26 s 0.91 s

2×Opt.2 Conf.(2b) 0.40 s2 5.5° 
93.1°

–6.8° 
–101.2°

26.3° 
3.3° 0.29 s 0.21 s 0.68 s

Opt.4 Conf.(2c) 0.39 s2

28.3° 
4.6° 
–3.4° 
146.8°

–39.1 
–12.6° 
–4.8° 

–150.6°

9.7° 
22.4° 
–37.4° 
–5.2°

0.25 s 0.21 s 0.78 s

Test Conf. – Calibration in the test configuration (q0  = 0°, 60°, –45°), F0= Fmax [0, 0.29, –0.96]T)

Opt.1 Conf. – Calibration in the optimal configuration obtained with one experiment (m=1)

Opt.2 Conf. – Calibration in the optimal configuration obtained with two experiments (m=2)

Opt.3 Conf. – Calibration in the optimal configuration obtained with three experiments (m=3)

Opt.4 Conf. – Calibration in the optimal configuration obtained with four experiments (m=4)



Pomiary Automatyka Robotyka  nr 1/2013 135

ined results also insure better end-point positioning accu-
racy in other configurations. 

Fig. 3 illustrates accuracy of the compliance error com-
pensation for four measurements using different plans of 
calibration experiments with a random measurement er-
rors. which are assumed to be normally distributed with 
zero expectation and s = 0.1 mm. Here the curve (1) has 

Fig. 3. The accuracy of the compliance error compensation for 
different plans of calibration experiments for 3-link mani-
pulator for s = 0.1 mm: (1) random plan r0, rand; (2a) opti-
mal plan for one calibration experiment r0, opt1, (2b) opti-
mal plan for two calibration experiments r0, opt2, (2c) opti-
mal plan for four calibration experiments r0, opt4; (3) expec-
tation for plan (1) 0, 0.253rand mmρ = ; (4a) expectation 
for plan (2a) 0, 1 0.071opt mmρ = ; (4b) expectation for plan 
(2b) 0, 2 0.065opt mmρ = ; (4c) expectation for plan (2c) 

0, 4 0.063opt mmρ = .
Rys. 3. Dokładność kompensacji błędu podatności dla róznych 

planów eksperymentów kalibracji dla manipulatora  
o 3 złączach dla s = 0,1 mm: 1) plan losowy r0, rand; (2a) 
plan optymalny dla pojedynczego eksperymentu kalibra-
cji r0, opt1, (2b) plan optymalny dla 2 eksperymentów ka-
libracji r0, opt2, (2c) plan optymalny dla 4 eksperymentów 
kalibracji r0, opt4; (3) wartość oczekiwana dla planu (1) 

0, 0.253rand mmρ =  ; (4a) wartość oczekiwana dla planu 
(2a) 0, 1 0.071opt mmρ = ; (4b) wartość oczekiwana dla pla-
nu (2b) 0, 2 0.065opt mmρ = ; (4c) wartość oczekiwana dla 
planu (2c) 0, 4 0.063opt mmρ =

1 1 2 2

1

1

2

2

 

 
randρ

opta ρ
optb ρ
optc ρ

randρ

opta ρ
optb ρ

optc ρ

ρ

been obtained for the random plan of experiments (for 
each experiment all configurations have been generated 
randomly), the line (3) is the expectation of the complian-
ce error compensation for the random plans that is equ-
al to 0.253 mm. The curves (2a), (2b), (2c) show the ac-
curacy of the compliance error compensation for the opti-
mal plans of experiments obtained using test-pose-based 
approach and the lines (4a), (4b), (4c) are the expecta-
tions of the compliance error compensation that are equ-
al to 0.071 mm, 0.065 mm, 0.063 mm, respectively. It sho-
uld be mentioned that  the optimal plans (a) and (b) have 
been built as a superposition of optimal plans for one and 
two calibration experiments, respectively. 

Corresponding numerical results are presented in tab. 2. 
Fig. 3 shows that the plans (2a) and (2b), obtained by mul-
tiplication of the measurement configurations correspon-
ding to m = 1 and m = 2, are very close to the plan cor-
responding to m = 4. So, in practice, it is reasonable to 
carry out experiments using only two optimal configura-
tions and repeating experiments several times. This appro-
ach slightly reduces the identification accuracy (less than 
2.5 %), however it significantly reduces the complexity of 
the optimization problem (35) used for design of calibra-
tion experiment.

6. Calibration experiment design for 
6 d.o.f. manipulator: KUKA KR-270

Now let us consider the more sophisticated example that 
deals with calibration experiments design for the industrial 
robot KUKA KR-270 (fig. 4). This robot has six actuated 
joints, which are assumed to be flexible. The links of the 
robot are quite stiff and are considered as rigid.

For such a manipulator (where the first joint defines the 
robot orientation in the xy-plane), it is reasonable to de-
compose the elastostatic calibration into two independent 
steps. The first step includes calibration of stiffness coef-

Fig. 5.  Geometrical model of Kuka KR-270 
Rys. 5.  Model geometryczny robota Kuka KR-270

Fig. 4. Machining configuration for the robot Kuka KR-270 (Test 
pose)

Rys. 4. Konfiguracja obróbki dla robota Kuka KR-270 (test)
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ficients for joints 2…6 with vertical loading only. The se-
cond step includes the stiffness parameter calibration for 
the joint 1. It is obvious that the second step is quite easy 
from the experiment design point of view. In this case the 
optimization problem has only one variable for each con-
figuration and the classical experiment design theory can 
be applied directly. In contrast, the first step is non trivial 
and requires intensive computations (corresponding results 
are presented below).

In more details, the geometrical model and parame-
ters of the robot are presented in fig. 5 and tab. 3, which 
also contains definition of the test pose that is presented 
in fig. 4) [26].

It should be noted that for the machining process and 
for the elastostatic calibration different tools are used (see 
CAD models presented in fig. 6). For this reason, compu-
tation of the matrices ( )

0
pA  and ( )p

iA  involves different geo-
metrical transformations “Tool”. For given test configura-
tion, the first of these matrices is defined as follows

 

( )
0

  -73.4   -177.4   -106.1  102.4    0 
        0           0     197.2    19.3    0 
 -363.6    -98.3   -167.1   -42.2    0 

p

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A  (38)

For the considered application example, there is a num-
ber of very specific constraints that are usually not con-
sidered in pure theoretical studies. In particular, there is 
a number of obstacles in the robot workspace (fig. 7) that 
do not allow to achieve some configurations and to apply 
forces in some directions (vertical payload is obviously pre-

ferable). These constraints are summarized in tab. 4. In 
addition, it is necessary to take into account usual con-
straints of the range of the joint variables (“joint limits”).

For this setting, it was solved the optimization problem 
(21) which produced the calibration experiment plans for 
m  Î [2,  3, 4, 6, 12}. While solving this problem, it was as-
sumed that the end-effector position was estimated using 
the Leica laser tracker (fig. 8) [27], for which the measure-
ment errors can be presented as unbiased random values 
with s.t.d. s = 0.03 mm. It is also assumed that the applied 
loading is the same for all calibration experiments and is 

Tab. 3.  Initial data for robotic-based milling
Tab. 3.  Dane wstępne do obróbki zrobotyzowanej

Test configuration, [deg]

q1 q2 q3 q4 q5 q6

75 -56.9 89.3 45.1 76 57.2

Machining force, [N] and torque [N m]

Fx Fy Fz Tx Ty Tz

0 280 -180 0 0 0

Geometrical parameters, [mm]

d1 d2 d3 d4 d5 d6

350 750 1250 -55 1100 0

x

y

z

y

ϕ

zp

yp
xp

r

 

450 mm
75.5 mm

460 mm
x

z

xz

      

Fig. 6. Tools used for machining and elastostatic calibration
Rys. 6. Narzędzia do obróbki oraz kalibracji elastostatycznej

Fig. 7. Workspace parameters included in the constraints for the 
elastostatic calibration 

Rys. 7. Parametry przestrzeni roboczej z uwzględnieniem ogra-
niczeń kalibracji elastostatycznej

Tab. 4.  Geometrical constraints for the elastostatic calibration
Tab. 4. Ograniczenia geometryczne dla kalibracji elastostatycz-

nej

pz r |ϕ|

> 800 mm > 600 mm < π/6

Fig. 8. Leica laser tracker
Rys. 8. Manipulator laseru Leica
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Tab. 5.  Measurement configurations for the elastostatic cali-
bration

Tab. 5.  Konfiguracje pomiarów dla kalibracji elastostatyczne

iq Measurement configurations, [deg]

q2 q3 q4 q5 q6

2 calibration experiments

1q -99.9 114.3 -48.5 28.1 -180

2q -67.8 -94.0 137.5 -111.9 76.9

3 calibration experiments

1q -93.5 125.0 -118.7 -62.4 -168.9

2q -103.4 93.4 -147.9 105.8 93.2

3q -98.9 113.8 50.6 -38.6 16.8

4 calibration experiments

1q -81.1 64.9 -55.4 42.2 149.7

2q -96.6 15.4 112.1 -19.7 178.4

3q -111.2 -69.0 133.5 113.9 -118.8

4q -108.1 93.5 -34.2 -108.9 73.3

6 calibration experiments

1q -84.0 126.9 -119.4 -61.2 -172.9

2q -105.5 98.6 -148.2 99.7 94.7

3q -106.0 106.8 49.4 -38.5 22.2

4q -89.2 132.3 -119.2 -61.4 -173.9

5q -96.7 86.6 -147.1 102.3 96.0

6q -99.4 108.8 51.8 -39.1 17.6

12 calibration experiments

1q -83.8 127.6 -120.0 -60.9 -173.8

2q -105.9 99.1 -148.5 100.1 94.7

3q -105.7 107.1 49.4 -39.1 22.1

4q -89.4 131.6 -119.0 -61.4 -172.8

5q -97.1 85.8 -146.8 101.5 96.1

6q -99.4 107.8 52.8 -39.9 17.6

7q -83.3 126.1 -118.9 -60.3 -171.9

8q -106.2 98.1 -148.0 99.7 95.1

9q -106.1 106.5 49.6 -38.1 21.6

10q -89.8 133.4 -119.0 -60.8 -174.0

11q -97.6 85.9 -146.3 102.7 96.3

12q -98.9 109.6 52.6 -39.5 18.2

equal to Fj = [0, 0, –2500, 0, 0, 0]T. The letter allows us 
to reduce the number of design variables by the factor of 
two. For the computations the workstation Dell Precision 
T7500 with two processors Intel Xeon X5690 (Six Core, 
3.46 GHz, 12 MB Cache12) and 48 GB 1333 MHz DDR3 
ECC RDIMM was used. Since the optimisation problem   
(21) is quite sensitive to the starting point, parallel com-
puting with huge number of the initial points were used.

The obtained results are summarized in tab. 5, 6 and 7. 
They include the identification errors for the elastostatic 
parameters, the accuracy of the error compensation 0ρ  for 
different plans of experiments and detailed descriptions of 
the measurement configurations. Tab. 6 also includes some 
additional results obtained by multiplication of the measu-
rement configurations, which show that it is not reasona-
ble to solve optimization problem for 12 configurations 
(that produce 60 design variables). However, almost the 
same accuracy of the compliance error compensation can 
be achieved by carrying out 12 measurements in 3 diffe-
rent configurations only (4 measurements in each configu-
ration). This conclusion is in good agreement with the re-
sults presented in the previous section for 3 d.o.f. manipu-
lator.

For comparison purposes, 0 presents simulation results 
obtained for different types of calibration experiments. As 
follows from them, any optimal plan (obtained for the case 
of two, three, four, six or twelve calibration experiments) 
improves the accuracy of the compliance error compensa-
tion in the given test pose by about 60 % comparing to the 
random plan. Also, it is illustrated that repeating experi-
ments with optimal plans obtained for the lower number 
of experiments provides almost the same accuracy as „full- 
-dimensional” optimal plan. Obviously, the reduction of 
the measurement pose number is very attractive for the 
engineering practice. 

Tab. 6. Elastostatic parameters estimation error
Tab. 6. Parametry elastostatyczne błędu szacowania

Number 
of exp.

Estimation error, [rad/ N m×10-9]

2kδ 3kδ 4kδ 5kδ
6kδ

2 exp. 6.55 6.88 24.0 34.5 71.9

3 exp. 5.74 6.87 19.2 26.4 74.9

4 exp. 3.72 6.96 16.9 21.2 66.9

6 exp. 3.93 4.82 13.8 16.4 55.2

12 exp. 2.78 3.41 9.75 11.6 38.8

7. Conclusions

The paper presents a new approach for the design of the 
elastostatic calibration experiments for robotic manipu-
lators that allows essentially reducing the identification 
errors due to proper selection of the manipulator configu-
rations and corresponding loadings, which are used for the 
measurements. In contrast to other works, the quality of 
the plan of experiments is estimated using a new perfor-
mance measure that evaluates the efficiency of the com-
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pliance error compensation in the given test-pose. This 
approach allows to combine multiple objectives with dif-
ferent units in a single performance measure and ensu-
res the best position accuracy for the given test configu-
ration under the task loading. The proposed criterion can 
be treated as the weighted trace of the covariance matrix, 
where the weighting coefficients are derived using the test 
pose parameters.  

The advantages of the developed technique are illu-
strated by two examples that deal with the calibration 
experiment design for 3 d.o.f. and 6 d.o.f. manipulators. 
They show the benefits of the proposed approach, which is 
expressed via the position accuracy under the task loading. 
Besides, the results show that the combination of the low-
dimension optimal plans gives almost the same accuracy 

Fig. 9. The accuracy of the compliance error compensation for 
different plans of calibration experiments for Kuka  
KR-270 manipulator for 0.03mmσ = : (1) random plan 

0, randρ ; (2a) six experiments for optimal plan obtained for 
two calibration experiment 0, 2optρ , (2b) four experiments 
for optimal plan obtained for three calibration experiment 

0, 3optρ , (2c) three experiments for optimal plan obtained 
for four calibration experiment, 0, 4optρ , (2d) two experi-
ments for optimal plan obtained for six calibration expe-
riment, 0, 6optρ , (2e) experiments for optimal plan obta-
ined for twelve calibration experiment 0, 12optρ ;  
(3) expectation for plan (1) 3

0, 3.43·10rand mmρ −=  ;  
(4a) expectation for plan (2a) 3

0, 2 2.15·10opt mmρ −= ;  
(4b) expectation for plan (2b) 3

0, 3 2.09·10opt mmρ −= ;  
(4c) expectation for plan (2c) 3

0, 4 2.13·10opt mmρ −= ; 
 (4d) expectation for plan (2d) 3

0, 6 2.17·10opt mmρ −= ;  
(4e) expectation for plan (2e) 3

0, 12 2.16·10opt mmρ −= ; 

Rys. 9. Dokładność kompensacji błędu podatności dla róznych 
planów eksperymentów kalibracji dla manipulatora Kuka 
KR-270 or 0.03mmσ = : (1) plan losowy 0, randρ ; (2a) 
6 doświadczeń dla planu optymalnego uzsykanego dla 
2 eksperymentów kalibracji 0, 2optρ , (2b) 4 doświadczenia 
dla planu optymalnego uzsykanego dla 3 eksperymentów 
kalibracji, 0, 3optρ , (2c) 3 doświadczenia dla planu optymal-
nego uzsykanego dla 4 eksperymentów kalibracji, 0, 4optρ , 
(2d) 2 doświadczenia dla planu optymalnego uzsykane-
go dla 6 eksperymentów kalibracji, 0, 6optρ , (2e) doświad-
czenia dla optymalnego planu uzyskane w 12 ekspery-
mentach  kalibracji 0, 12optρ ;  (3) wartość oczekiwana dla 
planu (1) 3

0, 3.43·10rand mmρ −=  ; (4a) wartość oczekiwa-
na dla planu (2a) 3

0, 2 2.15·10opt mmρ −= ; (4b) wartość ocze-
kiwana dla planu (2b) 3

0, 3 2.09·10opt mmρ −= ; (4c) wartość 
oczekiwana dla planu (2c) 3

0, 4 2.13·10opt mmρ −= ; 
(4d) wartość oczekiwana dla planu (2d) 

3
0, 6 2.17·10opt mmρ −= ;  (4e) wartość oczekiwana dla planu 

 (2e) 3
0, 12 2.16·10opt mmρ −= ; 

0,(1) rρ

0, 2(2 ) pρ
0, 3(2 ) pρ
0, 4(2 ) pρ

0,(3) rρ
0, 2(4 ) pρ
0, 3(4 ) pρ

0, 4(4 ) pρ

1 1 2 2

1

2

1

optd ρ

opte ρ

optd ρ
opte ρ

ρ

Tab. 7. The accuracy of the error compensation 0ρ  for different plans of experiments, [mm×10–3]
Tab 7. Dokładność błędu kompensacji 0ρ  dla różnych planów eksperymentu, [mm×10–3]

Number  
of exp.

Number of different configuration

2 conf. 3 conf. 4 conf. 6 conf. 12 conf.

2 exp. 5.989

3 exp. – 4.676

4 exp.
4.235 

(4.72%)
– 4.044

6 exp.
3.458 

(7.13%)
3.306 

(2.42%)
– 3.228

12 exp.
2.445 

(7.14%)
2.338 

(2.45%)
2.335 

(2.32%)
2.283 

(<0.01%)
2.282
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as a full-dimensional plan. This conclusion allows the user 
to reduce essentially the computational complexity requ-
ired for the calibration experiment design. 

In future, the proposed approach will be extended for 
the case of simultaneous calibration of geometrical and 
elastostatic parameters. Another problem, which requires 
additional investigation is the experiment design for the 
set of the test poses (or for a long machining trajectory). 
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Projektowanie eksperymentów kalibracyjnych 
identyfikacji parametrów elastotyczności  

manipulatorów

Streszczenie: Artykuł jest poświęcony elastostatycznej kalibra-
cji robotów przemysłowych, których używa się do precyzyjnej 
obróbki elementów o dużych gabarytach, wykonanych z mate-
riałów kompozytowych. W tym procesie technologicznym ko-
munikacja między robotem a obrabiaym przedmiotem skutku-
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je istotnymi elastycznymi odchyleniami elementów składowych 
manipulatora, które powinny być wyrównane przez sterownik 
robota (przy użyciu odpowiedniego modelu elastostatyczne-
go owego mechanizmu). Aby oszacować parametry tego mo-
delu, użyto zaawansowanej techniki kalibracji opartej na nieli-
niowej eksperymentalnej teorii konstrukcji, którą zaadaptowa-
no do tej konkretnej aplikacji. W przeciwieństwie do poprzed-
nich prac, ta proponuje pojęcie zdefiniowanego przez użytkow-
nika testu, używanego do ewaluacji jakości eksperymentów do-
tyczących kalibrowania. W ramach tego pojęcia zdefiniowano 
problem powiązanej optymalizacji oraz wypracowano procedury 
numeryczne, co pozwala na wygenerowanie optymalnego zbio-
ru ustawień konfiguracji manipulatora oraz odpowiednich sił/to-
rów dla danej liczby eksperymentów związanych z kalibrowa-
niem. Pod uwagę zostały wzięte również niektóre swoiste ki-
nematyczne ograniczenia, które zapewniają wykonalność eks-
perymentów dotyczących kalibracji dla uzyskanych konfigura-
cji, jak również  pozwalają uniknąć kolizji pomiędzy manipula-
torem robota a sprzętem pomiarowym. Wydajność/skuteczność 
wypracowanej techniki zilustrowano przez przykład zastosowa-
nia, którym obrazuje kalibrację elastostatyczną seryjnego mani-
pulatora zastosowanego do obróbki zrobotyzowanej. 

Słowa kluczowe: robot przemysłowy, kalibracja elastyczności, 
projektowanie eksperymentu, przemysł zorientowany miarą wy-
dajności, test-stwarzać podejście
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