PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Standard uncertainty determination of the mean for correlated data using conditional averaging

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
The correlation of data contained in a series of signal sample values makes the estimation of the statistical characteristics describing such a random sample difficult. The positive correlation of data increases the arithmetic mean variance in relation to the series of uncorrelated results. If the normalized autocorrelation function of the positively correlated observations and their variance are known, then the effect of the correlation can be taken into consideration in the estimation process computationally. A significant hindrance to the assessment of the estimation process appears when the autocorrelation function is unknown. This study describes an application of the conditional averaging of the positively correlated data with the Gaussian distribution for the assessment of the correlation of an observation series, and the determination of the standard uncertainty of the arithmetic mean. The method presented here can be particularly useful for high values of correlation (when the value of the normalized autocorrelation function is higher than 0.5), and for the number of data higher than 50. In the paper the results of theoretical research are presented, as well as those of the selected experiments of the processing and analysis of physical signals.
Rocznik
Strony
787--796
Opis fizyczny
Bibliogr. 19 poz., tab., wykr., wzory
Twórcy
autor
autor
autor
  • Rzeszow University of Technology, Department of Metrology and Diagnostic Systems, Powstańców Warszawy 12, 35-959 Rzeszow, Poland, kowadam@prz.edu.pl
Bibliografia
  • [1] Bartels J. (1935). Zur Morphologie geophysikalischer Zeitfunktionen. Sitz-Ber. Preuß. Akad. Wiss., 30, 502-522.
  • [2] Bayley G.V. & Hammersley G.M. (1946). The “effective” number of independent observations in an autocorrelated time-series. J. Roy. Stat. Soc. Suppl., 8, 184-197.
  • [3] Bendat J.S., Piersol A.G. (2000). Random Data. Analysis and Measurement Procedures. John Wiley & Sons, New York.
  • [4] Box G.E.P., Jenkins G.M., Reinsel G.C. (1994). Time Series Analysis: Forecasting and Control. Prentice Hall, Englewood Cliffs.
  • [5] Dorozhovets M., Warsza Z. (2007). Evaluation of the uncertainty type A of autocorrelated measurement observations. Measurement Automation and Monitoring, 2, 20-24. (in Polish)
  • [6] Dorozhovets M. (2009). Influence of lack of a priori knowledge about autocorrelation functions of observations on estimation of their average value standard uncertainty. Measurement Automation and Monitoring, 55(12), 2-5. (in Polish)
  • [7] Freund R.J., Wilson W.J., (2006). Regression Analysis. Statistical Modeling of a Response Variable. Elsevier, Amsterdam.
  • [8] Kirkup L., B. Frenkel L. (2006). An Introduction to the Uncertainty in Measurement. Cambridge University Press, Cambridge.
  • [9] Leith C.E. (1973). The standard error of time-averaged estimates of climatic means. J. Appl. Meteorol., 12, 1066-1069.
  • [10] Şen Z. (1998). Small sample estimation of the variance of time-averages in climatic time series. Int. J. Climatol., 18, 1725-1732.
  • [11] Witt T.J. (2007). Using the autocorrelation function to characterize time series of voltage measurements. Metrologia, 44, 201-209.
  • [12] Zhang N.F. (2008). Allan variance of time series models for measurement data. Metrologia, 45, 549-561.
  • [13] Zhang N.F. (2006). Calculation of the uncertainty of the mean of autocorrelated measurements. Metrologia, 43, 276-281.
  • [14] Zięba A. (2010). Effective number of observations and unbiased estimators of variance for autocorrelated data - an overview. Metrol. Meas. Syst., 17(1), 3-16.
  • [15] Zięba A., Ramza P. (2011). Standard deviation of the mean of autocorrelated observations estimated with the use of the autocorrelation. Metrol. Meas. Syst., 18(4), 529-542.
  • [16] Kowalczyk A., Szlachta A., Hanus R. (2011). Application of correlation interval to determination of standard uncertainty of arithmetic mean for correlated data. Measurement Automation and Monitoring, 57(12), 1549-1551. (in Polish)
  • [17] Mirskii, G.J. (1971). Instrumental determination of the characteristics of random processes. Energiya, Moscow. (in Russian)
  • [18] Kowalczyk A., Szlachta A. (2010). The application of conditional averaging of signals to obtain the transportation delay. Electrical Review, 86(1), 225-228. (in Polish)
  • [19] Hanus R., Szlachta A., Kowalczyk A., Petryka L., Zych M. (25-28 March, 2012). Radioisotope Measurement of Two-Phase Flow in Pipeline Using Conditional Averaging of Signal. In Proc. IEEE Mediterranean Electrotechnical Conference MELECON 2012. IEEE Press, 144-147.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0106-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.