PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Energy of intrinsic mode function for gas-liquid flow pattern identification

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Gas-liquid flows abound in a great variety of industrial processes. Correct recognition of the regimes of a gas-liquid flow is one of the most formidable challenges in multiphase flow measurement. Here we put forward a novel approach to the classification of gas-liquid flow patterns. In this method a flow-pattern map is constructed based on the average energy of intrinsic mode function and the volumetric void fraction of gas-liquid mixture. The intrinsic mode function is extracted from the pressure fluctuation across a bluff body using the empirical mode decomposition technique. Experiments adopting air and water as the working fluids are conducted in the bubble, plug, slug, and annular flow patterns at ambient temperature and atmospheric pressure. Verification tests indicate that the identification rate of the flow-pattern map developed exceeds 90%. This approach is appropriate for the gas-liquid flow pattern identification in practical applications.
Rocznik
Strony
759--766
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
autor
  • Central South University, School of Energy Science and Engineering, Changsha 410083, China, zqsun@csu.edu.cn
Bibliografia
  • [1] Rouhani, S.Z., Sohal, M.S. (1983). Two-phase flow patterns: a review of research results. Prog. Nucl. Energy, 11(3), 219-259.
  • [2] Ramskill, N. P., Wang, M. (2011). Boolean logic analysis for flow regime recognition of gas-liquid horizontal flow. Meas. Sci. Technol., 22(10), 104016.
  • [3] Baker, O. (1954). Simultaneous flow of oil and gas. Oil Gas J., 53(2), 185-195.
  • [4] Cheng, L., Ribatski, G., Thome, J.R. (2008). Two-phase flow patterns and flow-pattern maps: fundamentals and applications. Appl. Mech. Rev., 61(1), 050802.
  • [5] Mandhane, J.M., Gregory, G.A., Aziz, K. (1974). A flow pattern map for gas-liquid flow in horizontal pipes. Int. J. Multiphas. Flow, 1(4), 537-553.
  • [6] Williamson, C.H.K. (1996). Vortex dynamics in the cylinder wake. An.. Rev. Fluid. Mech., 28(1), 477-539.
  • [7] Sun, Z., Zhang, H. (2008). Neural networks approach for prediction of gas-liquid two-phase flow pattern based on frequency domain analysis of vortex flowmeter signals. Meas. Sci. Technol., 19(1), 015401.
  • [8] Sun, Z., Zhang, H. (2009). Application of empirical mode decomposition based energy ratio to vortex flowmeter state diagnosis. J. Cent. South Univ. T., 16(1), 154-159.
  • [9] Hulin, J.P., Fierfort, C., Condol, R. (1982). Experimental study of vortex emission behind bluff obstacles in a gas liquid vertical two phase flow. Int. J. Multiphas. Flow, 8(5), 475-490.
  • [10] Inoue, A., Kozawa, Y., Yokosawa, M., Aoki, S. (1986). Studies on two phase cross flow part I: characteristics around a cylinder. Int. J. Multiphas. Flow, 12(2), 149-167.
  • [11] Shakouchi, T., Tian, D., Ida, T. (2002). Behavior of vertical upward gas-liquid two-phase flow past obstacle in rectangular channel. JSME Int. J. Ser B-Fluids Therm. Eng., 45(3), 686-693.
  • [12] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. P. Roy. Soc. A-Math. Phy., 454(1971), 903-995.
  • [13] Sun, Z., Zhou, J., Zhou, P. (2006). Application of Hilbert-Huang transform to denoising in vortex flowmeter. J. Cent. South Univ. T., 13(5), 501-505.
  • [14] Zhang, H., Huang, Y., Sun, Z. (2006). A study of mass flow rate measurement based on the vortex shedding principle. Flow Meas. Instru., 17(1), 29-38.
  • [15] Sun, Z., Zhang, H., Zhou, J. (2007). Investigation of the pressure probe properties as the sensor in the vortex flowmeter. Sensor. Actuat. A-Phys., 136(2), 646-655.
  • [16] Sun, Z., Zhang, H., Zhou, J. (2008). Evaluation of uncertainty in a vortex flowmeter measurement. Measurement, 41(4), 349-356.
  • [17] Sun, B., Zhang, H., Cheng, L., Zhao, Y. (2006). Flow regime identification of gas-liquid two-phase flow based on HHT. Chinese J. Chem. Eng., 14(1), 24-30.
  • [18] Ding, H., Huang, Z. Y., Song, Z. H., Yan, Y. (2007). Hilbert-Huang transform based signal analysis for the characterization of gas-liquid two-phase flow. Flow Meas. Instru., 18(1), 37-46.
  • [19] Sun, Z. (2010). Mass flow measurement of gas-liquid bubble flow with the combined use of a Venturi tube and a vortex flowmeter. Meas. Sci. Technol., 21(5), 055403.
  • [20] Sun, Z., Zhang, H. (2010). Measurement of the flow rate and volume void fraction of gas-liquid bubble flow using a vortex flow meter. Chem. Eng. Commun., 197(2), 145-57.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0106-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.