PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solution of some problems of single-scale wavelet transform processor using a magnetostatic surface wave device

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
In this paper, we investigate the implementation schemes of a single-scale wavelet transform processor using magnetostatic surface wave (MSSW) devices. There are three implementation schemes: the interdigital transducer, the meander line transducer and the grating transducer. Because the interdigital transducer has excellent properties, namely, good frequency characteristic and low insertion loss, we use the interdigital transducer as the implementation scheme of a single-scale wavelet transform processor using MSSW device. In the paper, we also present the solutions to the three key problems: the direct coupling between the input transducer and the output transducer, the insertion loss, and the loss characteristics of the gyromagnetic film having an influence on the wavelet transform processor. There are two methods of reducing the direct coupling between the input transducer and the output transducer: increasing the distance between the input transducer and the output transducer, and placing a metal "wall" between the input transducer and the output transducer. There also are two methods of reducing the insertion loss of a single-scale wavelet transform processor using a MSSW device for scale: the appropriate thickness of the yttrium iron garnet (YIG) film and the uniform magnetic field. The smaller the ferromagnetic resonance linewidth of the gyromagnetic film, the smaller the magnetostatic wave propagation loss.
Rocznik
Strony
685--692
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
autor
  • Donghua University, School of Information science and Technology, Shanghai 201620, China, luwenkelu@163.com
Bibliografia
  • [1] Zhang, C., Wang, C., Ahmad, M.O. (2012). A Pipeline VLSI Architecture for Fast Computation of the 2-D Discrete Wavelet Transform. IEEE Transactions on Circuits and Systems I, 99(1), 1-11.
  • [2] Tian, X., Wu, L., Tan, Y.H., Tian, J.W. (2011). Efficient Multi-Input/Multi-Output VLSI Architecture for Two-Dimensional Lifting-Based Discrete Wavelet Transform. IEEE Transactions on Computers, 60(8), 1207-1211.
  • [3] Roberge, D., Sheng, Y. (1994) Optical wavelet matched filter. Applied Optics, 33(23), 5287-5293.
  • [4] Chen, X., Zhang, X., Chen, K., Li, Q. (1997). Optical wavelet-matched filtering with bacteriorhodopsin films. Applied Optics, 36(32), 8413-8416.
  • [5] Lu, W., Zhu, C., Liu, J., Liu, Q. (2003). Implementing wavelet transform with SAW elements. Science China, 46(6), 627-638.
  • [6] Lu, W., Zhu, C., Liu, Q., Liu, J. (2005). Wavelet transform element of SAW type. Chinese Science Bulletin, 50(6), 598-602.
  • [7] Lu, W., Zhu, C. (2011). A novel compensation method of insertion losses for wavelet inverse-transform processors using surface acoustic wave devices. Review of Scientific Instruments, 82(11), 115003.1-115003.7.
  • [8] Lu, W., Zhu, C. (2010). Solving three key problems of wavelet transform processor using surface acoustic wave devices. IEEE Trans. Industrial Electronics, 57(11), 3801-3806.
  • [9] Wen, C., Zhu, C., Ju, Y., Qiu, Y., Lu, W., Hu, X. (2008). Dual track architecture and time synchronous scheme for wavelet reconstruction processor using SAW device based on MSC. Sens. Actuators A, 147(5), 222-228.
  • [10] Wen, C., Zhu, C., Ju, Y., Qiu, Y. Lu W., Hu, X. (2009). Optimal frequency band design scheme of dyadic wavelet processor array using surface acoustic wave devices. IEEE Trans. Industrial Electronics, 56(4), 949-955.
  • [11] Lu, W., Zhu, C. (2011). Study of small size wavelet transform processor and wavelet inverse-transform processor using SAW devices. Measurement, 44(5), 994-999.
  • [12] Sethares, J.C. (1982). Magnetostatic wave devices and applications. Journal of Applied Physics, 53(3), 2646-2651.
  • [13] Castera, J.P. (1984). State of the art in design and technology of MSW devices. Journal of Applied Physics, 55(6), 2506-2511.
  • [14] Ishak, W.S. (1988). Magnetostatic wave technology. In Proc. of the IEEE, 76(2), 171-187.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0106-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.