PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High frequency metrology for intracardiac ablation: in-vivo results

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Cardiac Radiofrequency (RF) ablation is a commonly used clinical procedure for treating many cardiac arrhythmias. However, the efficacy of RF ablation may be limited by two factors: small ventricular lesions and impedance rise, leading to coagulum formation and desiccation of tissue. In this paper, a high frequency (HF) energy ablation system operating at 27.12 MHz based on an automated load matching system was developed. A HF energy matched probe associated to the automated impedance matching device ensures optimal transfer of the energy to the load. The aim of this study was to evaluate this energy for catheter ablation of the atrioventricular junction. In vivo studies were performed using 10 sheep to characterize the lesions created with the impedance matching system. No cardiac perforation was noted. No thrombus was observed at the catheter tip. Acute lesions ranged from 3 to 45 mm in diameter (mean šSD = 10.3š10) and from 1 to 15 mm in depth (6.7š3.9), exhibiting a close relationship between HF delivered power level and lesion size. Catheter ablation using HF current is feasible and appears effective in producing a stable AV block when applied at the AV junction and large myocardial lesions at ventricular sites.
Rocznik
Strony
603--610
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
autor
Bibliografia
  • [1] Huang, S.K., Bharati, S., Graham, A.R. (1987). Closed chest catheter desiccation of the atrioventricular junction using radio frequency energy: a new method of catheter ablation. J. Am. Coll. Cardiol., 18, 349-358.
  • [2] Lavergne, T., Guize, L., Le Heuzey, J.Y. (1986). Closed-chest atrioventricular junction ablation by high-frequency energy transcatheter desiccation. Lancet, 2, 858-859.
  • [3] Wtorek, J., Bujnowski, A., Rumiński, J., Poliński, A., Kaczmarek, M., Nowakowski, A. (2012). Assessment of cardiovascular risk in assisted living. Metrol. Meas. Syst., 19(2), 231-244.
  • [4] Jackman, W.M., Wang, X.Z., Friday, K.J. (1991). Catheter ablation of accessory atrioventricular pathways (Wolf-Parkinson-White syndrome) by radio frequency current. N. Engl. J. Med., 324, 1605-1611.
  • [5] Jackman, W.M., Beckman, K.J., McClelland, J.H. (1992). Treatment of supraventricular tachycardia due to atrioventricular nodal re-entry by radio frequency catheter ablation of slow-pathway conduction. N. Engl. J. Med., 327, 313-318.
  • [6] Haines, D.E., Verow, A. (1990). Observations on electrode-tissue interface temperature and effect on electrical impedance during radiofrequency ablation of ventricular myocardium. Circulation, 82, 1034-1038.
  • [7] Cooper, J.M., et al. (2004). Ablation with an internally irrigated radiofrequency catheter: learning how to avoid stem pops. Heart Rhythm, 1(3), 323-333.
  • [8] Saxon, L.A., Natterson, P., Delurgio, D.D., Shannon, K. (1995). Impedance characteristics of retrograde versus transeptal approaches to radiofrequency ablation of the left sided accessory pathway (abstract). PACE, 18, 921.
  • [9] Haines, D.E., Verow, A. (1990). Observations on electrode-tissue interface temperature and effect on electrical impedance during radiofrequency ablation of ventricular myocardium. Circulation, 82, 1034-1038.
  • [10] Wittkampf, F., Simmers, T., Hauer, R., De Medina, E.R. (1995). Myocardial temperature response during radiofrequency catheter ablation. PACE, 18, 307-317.
  • [11] Martinek, M. (2010). Identification of a high-risk population for esophageal injury during radiofrequency catheter ablation of atrial fibrillation: procedural and anatomical considerations. Heart Rhythm, 7(9), 1224-1230.
  • [12] Ren, J.F., et al. (2004). Left atrial thrombus associated with ablation for atrial fibrillation: identification with intracardiography. J. of the American college of cardiology, 43(10), 1861-1867.
  • [13] Zhou, L., et al. (1999). Thromboembolic complications of cardiac radiofrequency catheter ablation. A review of the reported incidence pathogenesis and current research directions. J. Cardiovasc, Electrophysiol, 10, 611-620.
  • [14] Kok, L.C., et al. (2002). Cerebrovascular complications associated with pulmonary vein ablation. J. Cardiovasc, Electrophysiol, 13, 764-767.
  • [15] Contreras-Valdes, F.M. (2011). Severity of esophageal injury predicts time to healing after radiofrequency catheter ablation for atrial fibrillation. Heart Rhythm, 8(12), 1862-1868.
  • [16] Nakagawa, H., Yamanashi, W.S,, Pitha, J.V. (1995). Comparison of in vivo temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation, 91, 2264-2273.
  • [17] Jaïs, P., Haïssaguerre, M., Shah, D.C., et al. (1998). Successful irrigated-tip catheter ablation of atrial flutter resistant to conventional radiofrequency ablation. Circulation, 98, 835-838.
  • [18] Dubuc, M., Skanes, A., Roy, D., Thibault, B., Talajic, M., Guerra, P. (2000). Catheter cryomapping and cryoablation of supraventricular rachycardia in man: preliminary results (abstract). PACE, 23(II), 613.
  • [19] Lesh, M.D., Diedrich, J., Guerra, P.G., Goseki, Y., Sparks, P.B. (1999). An anatomic approach to prevention of atrial fibrillation: Pulmonay vein isolation with through-the-ballon Ultrasound ablation. Thorac. Cardiovasc. Surg., 47 (Suppl.), 347-351.
  • [20] Svenson, R., Littman, L., Splinlen, R. (1990). Application of lasers for arrhytmia ablation. In Zipes D.; Jalife J. (eds): Cardiac Electrophysiology from cell to Beside. Philadelphia, WB Saunders, 989-997.
  • [21] Splitzer, S.G., Richter, P., Knaut, M., Schuler, S. (1999). Treatment of atrial fibrillation in open heart surgery. The potentiel role of microwave energy. Thorac. Cardiovasc. Surg., 47 (Suppl.), 374-378.
  • [22] Adragao, P., Parreira, L., Morgado, F., Bonhorst, D., Seabra-Gomes, R. (1999). Microwave ablation of atrial flutter. PACE, 22, 1692-1695.
  • [23] Vanderbrink, B.A., Gilbride, C. (2000). Safety and efficacy of a steerable temperature monitoring microwave catheter system for ventricular myocardial ablation. J. Cardio. Electrophysiology, 11, 305-310.
  • [24] Rouane, A., Nadi., M., Bru, P., Staiquly, A., Kourtiche, D., Hedjiedj, A., Prieur, G. (1995). Intracardiac HF catheter ablatherapy: Technical aspects. Med. Eng. Phys.,17, 36-41.
  • [25] Sied, M., Rouane, A., Chapelon, P.A., Nadi, M., Bru, P. (1997). Study of Electrophysiological Monopolar and Bipolar Probes in Intracardiac HF Ablation Therapy. ITBM, 18, 219-223. (in French)
  • [26] Rouane, A., Kourtiche, D. (2012). Characterization of microwave antennas for intracardiac ablation frequencies 915 and 2450 MHz. Measurement Science Review, 12(1), 34-39.
  • [27] Haines, D.E. (1991). Determinants of lesion size during radiofrequency catheter ablation: the role of electrode-tissue contact pressure and duration of energy delivery. J. Cardiovasc. Electrophysiol, 2, 509-515.
  • [28] Casey, J.P., Bansal, R. (1986). The near field of an insulated dipole in a dissipative dielectric medium. IEEE Trans. Microwave Theory Tech., 34, 459-463.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0105-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.