PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some quantum limits for scaling of electronic devices - estimations and measurements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
In this paper we discuss some physical limits for scaling of transistors and conducting paths inside of semiconductor integrated circuits (ICs). Since 40 years only a semiconductor technology, mostly the CMOS and the TTL technologies, are used for fabrication of integrated circuits on an industrial scale. Miniaturization of electronic devices in integrated circuits has technological limits and physical limits as well. In 2010 best parameters of commercial ICs shown the Intel Core i5-670 processor manufactured in the technology of 32 nm. Its clock frequency in turbo mode is 3.73 GHz. A forecast of the development of the semiconductor industry (ITRS 2011) predicts that sizes of electronic devices in ICs circuits will be smaller than 10 nm in the next 10 years. At least 5 physical effects should be taken into account if we discuss limits of scaling of integrated circuits.
Słowa kluczowe
Rocznik
Strony
481--488
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
  • Poznan University of Technology, Faculty of Electronics and Telecommunications, ul. Piotrowo 3A, 60-965 Poznan, Poland, nawrocki@et.put.poznan.pl
Bibliografia
  • [1] The International Technology Roadmap for Semiconductors, 2011, www.itrs.net/reports.
  • [2] Frank, D.J., Dennard, R.H., Nowak, E., Solomon, P.M., Taur, Y., Wong, H.S.P. (2001). Device scaling limits of Si MOSFETs and their application dependencies. In Proc. IEEE, 89, 259-287.
  • [3] Landauer, R. (1989). Conductance determined by transmission: probes and quantised constriction resistance. Journal Phys.: Cond. Matter, 1, 8099-8120.
  • [4] Büttiker, M. (1988). Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B, 38, 9375-9380.
  • [5] Nawrocki, W. (2008). Electrical and thermal conductance quantization in nanostructures. Journal of Physics: Conference Series, 129, 012023.
  • [6] Greiner, A., Reggiani, L., Kuhn, T., Varani, L. (1997). Thermal Conductivity and Lorenz Number for One-Dimensional Ballistic Transport. Phys. Rev. Lett.,78, 1114-1117.
  • [7] Rego, L.G.C., Kirczenow, G. (1998). Qunatized thermal conductance of dielectric quantum wires. Phys. Rev. Lett., 81, 232-235.
  • [8] Schwab, K., Henriksen, E.A., Worlock, J.M., Roukes, M.L. (2000). Measurement of the quantum of thermal conductance. Nature,404, 974-977.
  • [9] Likharev, K. (2003). Advanced Semiconductor and Organic Nano-techniques, ed Markoç H. (Amsterdam: Elsevier) chapter 4.
  • [10] Krithivasan, R., Lu, Y., Cressler, J.D., Rieh, J.-S., Khater, M.H., Ahlgren, D., Freeman, G. (2006). Half-TeraHertz Operation of SiGe HBTs. IEEE Electron Device Letters, 27, 567-569.
  • [11] Comeau, J.P., Morton, M.A., et al. (2007). A Monolithic 5-Bit SiGe BiCMOS Receiver for X-Band Phased-Array Radar Systems. In Proc. 2007 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 172-175.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0105-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.