PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metrological conditions of strain measurement optoelectronic method by the use of the fibre Bragg gratings

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
This article presents a linear strain measurement method insensitive to temperature variations and using fibre Bragg gratings. Two Bragg gratings were applied with periods selected to obtain partial coverage of their spectrum characteristics. One of the gratings was subjected to a tension strength. Placing both gratings in one thermal chamber allowed - through ensuring the same thermal conditions - to obtain insensitivity of the entire scheme to temperature variations. The gratings were recorded on the same optical fibre and reacted to temperature variations in the same degree. Value of strain was indicated based on the transmission spectrum characteristic of two grating schemes. The use of transmission, not reflectance, characteristics of the gratings allowed for a direct measurement of the spectrum, without having to use a coupler or optical circulators, and at the same time, this allowed to simplify the strain detection scheme. We proposed applying the continuous wavelet transform with characteristics of the spectrum scheme of two gratings for improvement of static properties. Especially, the thermal linearity and stability of the sensor was improved. For a strain range up to 750 με, the non-linearity error of processing characteristic obtained was 0.45%. Thermal stability of the scheme proposed was defined as relative sensitivity of the power to temperature variations. The mean value of such relative sensitivity of the scheme proposed in the temperature scope of 21°C-95°C, amounted to 0.195.
Rocznik
Strony
471--480
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
  • Lublin University of Technology, Department of Electronics, 38A Nadbystrzycka Street, 20-618 Lublin, Poland, p.kisala@pollub.pl
Bibliografia
  • [1] Wierzba, P. (2008). Stability of an optical displacement sensor using a two-beam polarization interferometer. Metrol. Meas. Syst., 15(2), 205-213.
  • [2] Zang, Z.G., Yang, W.X. (2011). Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber. Journal of applied physics, 109, 103106.
  • [3] Zang, Z.G. (2012). Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber. Optics Communications, 285, 521-526.
  • [4] Zang, Z.G., Zhang, Y.J. (2012). Low-switching power (<45mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair. Journal of Modern Optics, 59(2), 161-165.
  • [5] Wójcik, W., Kisała P. (2009). The application of inverse analysis in strain distribution recovery using the fibre Bragg grating sensors. Metrol. Meas. Syst., 16(4), 649-660.
  • [6] Mroczka, J., Szczuczyński, D. (2009). Inverse problems formulated in term of first-kind fredholm integral equations in indirect measurements. Metrol. Meas. Syst.,16(3), 333-357.
  • [7]Mroczka, J., Szczuczyński, D. (2010). Improved regularized solution of the inverse problem in turbidimetric measurements. Applied Optics, 49(24), 4591-4603.
  • [8] Mroczka, J., Szczuczyński, D. (2012). Summary results of simulation research on improved regularized solution of inverse problem in spectral extinction measurements. Applied Optics, 51(10).
  • [9] Du, W.C., Tao, X.M., Tam, H.Y. (1999). Temperature independent strain measurement with a fiber grating tapered cavity sensor. IEEE Photon Technol. Lett., 11(5), 596-598.
  • [10] Guan, B.O., Tam, H.Y., Chan, H.L.W., Choy, C.L., Demokan, M.S. (2002). Discrimination between strain and temperature with a single fiber Bragg grating. Microw. Opt. Technol. Lett., 33(3-5), 200-202.
  • [11] Da-Peng, Zhou, Li, W., Wing-Ki, L., John, W.Y.L. (2008). Simultaneous measurement of strain and temperature based on a fiber Bragg grating combined with a high-birefringence fiber loop mirror. Optics Communications, 281, 4640-4643.
  • [12] Fang, Xie, Xianfeng, Chen, Lin, Zhang, Ming, Song. (2006). Realisation of an effective dual-parameter sensor employing a single fibre Bragg grating structure. Optics and Lasers in Engineering, 44, 1088-1095.
  • [13] James, S.W., Dockney, M.L., Tatam, R.P. (1996). Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors. Electron. Lett., 32(12), 1133-1134.
  • [14] Chan, T.H.T., Yu, L., Tam, H.Y., Ni, Y.Q., Liu, S.Y., Chung, W.H., Cheng, L.K. (2006). Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation. Engineering Structures, 28, 648-659.
  • [15] Moyo, P., Brownjohn, J.M.W., Suresh, R., Tjin, S.C. (2005). Development of fiber Bragg grating sensors for monitoring civil infrastructure. Engineering Structures,27, 1828-1834.
  • [16] Fernández-Valdivielso, C., Matías, I.R., Arregui, F.J. (2002). Simultaneous measurement of strain and temperature using a fiber Bragg grating and a thermochromic material. Sensors and Actuators A, 101, 107-116.
  • [17] Sungchul, K., Jaejoong, K., Sungwoo, K., Byoungho, L. (2000). Temperature-independent strain sensor using a chirped grating partially embedded in a glass tube. IEEE Photon. Technol. Lett., 12(6), 678-680.
  • [18] Xu, M.G., Dong, L., Reekie, L., Tucknott, J.A., Cruz, J.L. (1995). Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre. Electron. Lett., 31(10), 823-825.
  • [19] Kang, S.C., Kim, S.Y., Lee, S.B., Kwon, W., Choi, S.S., Lee, B. (1998). Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator. IEEE Photon. Technol. Lett. 10, 1461-1463.
  • [20] Guan, B.O., Tam, H.Y., Tao, X.M., Dong, X.Y. (2000). Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating. IEEE Photon. Technol. Lett., 12, 675-677.
  • [21] Szmajda, M., Górecki, K., Mroczka, J. (2010). Gabor transform, SPWVD, Gabor-Wigner transform and wavelet transform - tools for power quality monitoring. Metrol. Meas. Syst., 17(3), 383-396.
  • [22] Adamczak, S., Makieła, W. (2011). Analyzing variations in roundness profile parameters during the wavelet decomposition process using the Matlab environment. Metrol. Meas.Syst., 18(1), 25-34.
  • [23]Zieliński, T. (2001). Wavelet transform applications in instrumentation and measurement: Tutorial and literature survey. Metrol. Meas. Syst., 5(3), 141-151.
  • [24] Yu, F.T.S., Yin, S. (2002). Fiber Optic Sensors. Marcel Dekker, 135-136.
  • [25] Othonos, A., Kalli, K. (1999). Fiber Bragg Gratings. Fundamentals and Applications in Telecommunications and Sensing. Artech House Optoelectronics Library.
  • [26] Kashyap, R. (1999). Fiber Bragg Gratings. Academic Press.
  • [27] Mallat, S. (2009). A Wavelet Tour of Signal Processing. The Sparse Way. Elsevier Inc.
  • [28] Svilainis, L. (2008). LED PWM dimming linearity investigation. Displays, 29, 243-249.
  • [29] Sedalishche, V.N. (2006). An estimate of the utilization efficiency of coupled modes of oscillation in piezoresonance measuring instruments. Measurement Techniques, 49(8), 825-829.
  • [30] Adamczak, S., Bochnia, J., Kundera, C. (2012). Stress and strain measurements in static tensile tests. Metrol. Meas. Syst., 19(3), (in edition).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0105-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.