PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Algorithms and methods for analysis of the optical structure factor of fractal aggregates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
We introduce numerical methods and algorithms to estimate the main parameters of fractal-like particle aggregates from their optical structure factor (i.e. light scattering diagrams). The first algorithm is based on a direct and simple method, but its applicability is limited to aggregates with large size parameter and intermediate fractal dimension. The second algorithm requires to build calibration curves based on accurate particle agglomeration and particle light scattering models. It allows analyzing the optical structure factor of much smaller aggregates, regardless of their fractal dimension and the size of the single particles. Therefore, this algorithm as well as the introduction of a criteria curve to detect the different scattering regimes, are thought to be powerful tools to perform reliable and reproducible analyses.
Rocznik
Strony
459--470
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
autor
  • Wroclaw University of Technology, Chair of Electronic and Photonic Metrology, ul. B. Prusa 53/55, 50-317 Wrocław, Poland, janusz.mroczka@pwr.wroc.pl
Bibliografia
  • [1] Sorensen, C.M. (2001). Light Scattering by Fractal Aggregates: A Review. Aerosol Science and Technology, 35, 648-687.
  • [2] Onofri, F.R.A., Woźniak, M., Barbosa, S. (2011). On the Optical Characterization of Nanoparticle and their Aggregates in Plasma Systems. Contributions to Plasma Physics, 51(2-3), 228-236.
  • [3] Onofri, F.R.A., Krzysiek, M., Mroczka, J., Ren, K-F., Radev, S., Bonnet, J-P. (2009). Optical Characterization of Bubbly Flows with a Near-critical-angle Scattering Technique, Experiments in Fluids, 47(4-5), 721-732.
  • [4] Chaberski, D., Grzelak, D., Lewandowski, D., Dygdała, R., Zieliński, M., Stefański, K., Śmigielski, G. (2010). Distribution Measurements of Radii of Droplets Forming an Explosively Generated Water-Spray Cloud, Metrology and Measurement Systems, 17(3), 363-382.
  • [5] Kastek, M., Piątkowski, T., Trzaskawka, P. (2011).Infrared Imaging Fourier Transform Spectrometer as the Stand-Off Gas Detection System, Metrology and Measurement Systems, 18(4), 607-620.
  • [6] Witten, T.A., Sander, L.M. (1981). Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon. Physical Review Letters, 47(19), 1400-1403.
  • [7] Jullien, R., Botet, R. (1987). Aggregation and fractal aggregates. Singapore: World Scientific.
  • [8] Cai, J., Lu, N., Sorensen, C.M. (1995). Analysis of Fractal Cluster Morphology Parameters: Structural Coefficient and Density Autocorrelation Function Cutoff. Journal of Colloid and Interface Science, 171(2), 470-473.
  • [9] Koylu, U.O., Faeth, G.M., Farias, T.L., Carvalho, M.G. (1995). Fractal and Projected Structure Properties of Soot Aggregates. Combustion and Flame, 100(4), 621-633.
  • [10] Puri, R., Richardson, T.F., Santoro, R.J., Dobbins, R.A. (1993). Aerosol Dynamic Processes of Soot Aggregates in a Laminar Ethene Diffusion Flame. Combustion and Flame, 92(3), 320-333.
  • [11] Ouf, F.X., Yon, J., Ausset, P., Coppalle, A., Maille, M. (2010). Influence of Sampling and Storage Protocol on Fractal Morphology of Soot Studied by Transmission Electron Microscopy. Aerosol Science and Technology, 44(11), 1005-1017.
  • [12] Lapuerta, M., Martos, F.J., Martín-Gonzalez, G. (2009). Geometrical determination of the lacunarity of agglomerates with integer fractal dimension. Journal of Colloid and Interface Science, 346(1).
  • [13] Sorensen, C.M. (1997). Light Scattering by Fractal Aggregates: A Review. Aerosol Science and Technology, 35, 648-687.
  • [14] POV-Ray, Persistence of Vision Pty. Ltd., 3.6 ed: Persistence of Vision Raytracer (Version 3.6) [Computer Software], 2004, Retrieved 28.02.2009 from http://www.povray.org/download.
  • [15] Feller, W. (1971). An Introduction to Probability Theory and Its Applications, 2, New York.
  • [16] Babu, S., Gimel, J.C., Nicolai, T. (2008). Diffusion limited cluster aggregation with irreversible slippery bonds. The European Physical Journal E, 27(3).
  • [17] Woźniak, M., Onofri, F.R.A., Barbosa, S., Yon, J., Mroczka, J. (2012). Comparison of methods to derive morphological parameters of multifractal samples of particle aggregates from TEM images. Journal of Aerosol Science, 47, 12-26.
  • [18] Mie, G. (1908). Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik,330, 377-445.
  • [19] Bohren, C.F., Huffman, D.R. (1998). Absorption and Scattering of Light by Small Particles. John Wiley and Sons, Inc.
  • [20] Xu, R. (2002). Particle Characterization: Light Scattering Methods. New York: Kluwert Academic Publisher.
  • [21] Draine, B.T., Flatau, P.J. (2010). User Guide for the Discrete Dipole Approximation Code DDSCAT 7.1. Instrumentation and Methods for Astrophysics.
  • [22] Mishchenko, M., Travis, L.D., Mackowski, D.W. (2012). T-matrix Codes for Computing Electromagnetic Scattering by Nonspherical and Aggregated Particles. Retrieved 1.04.2009, from http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html.
  • [23] Mishchenko, M., Travis, L.D. (1998). Capabilities and limitations of a current Fortran implementation of the T-Matrix method for randomly oriented, rotationally oriented symmetric scatters. Journal of Quantitative Spectroscopy and Radiative Transfer, 60(3), 309-324.
  • [24] Sopra.S.A. (2010). Optical Data from Sopra S.A. Refractive Indexes Database: http://www.sopra-sa.com.
  • [25] Tourbin, M. (2006). Caracterisation comportement de suspensions concentrees de nanoparticules sous ecoulement: application aux processus d’agregation et de rupture. PhD Toulouse, National Polytechnique de Toulouse.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0105-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.