PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

LCoS spatial light modulators as active phase elements of full-field measurement systems and sensors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Spatial light modulators (SLM) are devices used to modulate amplitude, phase or polarization of a light wave in space and time. Current SLMs are based either on MEMS (micro-electro-mechanical system) or LCD (liquid crystal display) technology. Here we report on the parameters, trends in development and applications of phase SLMs based on liquid crystal on silicon (LCoS) technology. LCoS technology was developed for front and rear projection systems competing with AMLCD (active matrix LCD) and DMD (Digital Mirror Device) SLM. The reflective arrangement due to silicon backplane allows to put a high number of pixels in a small panel, keeping the fill-factor ratio high even for micron-sized pixels. For coherent photonics applications the most important type of LCoS SLM is a phase modulator. In the paper at first we describe the typical parameters of this device and the methods for its calibration. Later we present a review of applications of phase LCoS SLMs in imaging, metrology and beam manipulation, developed by the authors as well as known from the literature. These include active and adaptive interferometers, a smart holographic camera and holographic display, microscopy modified in illuminating and imaging paths and active sensors.
Rocznik
Strony
445--458
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
Bibliografia
  • [1] Khoo, I.-C. (2007). Liquid Crystals. Wiley Series in Pure and Applied Optics, (Volume 1) 2 edition, John Wiley & Sons.
  • [2] Savage, N. (2009). Digital spatial light modulators. Nature Photonics , 3(3), 170-172.
  • [3] Dai, H., Xu, K., Liu, Y., Wang, X., Liu, J. (2004). Characteristics of LCoS Phase-only spatial light modulator and its applications. Optics Communications, 238(4-6), 269-276.
  • [4] Yeh, P., Gu, C. (2009). Optics of Liquid Crystal Displays. Wiley Series in Pure and Applied Optics (Band 1), John Wiley & Sons.
  • [5] Lazarev, G., Hermerschmidt, A., Krüger, S., Osten, S. (2012). LCOS Spatial Light Modulators: Trends and Applications in Optical Imaging and Metrology: Advaced Technologies. Wiley VCH Verlag GmbH&Co. KGaA.
  • [6] LCoS Microdisplay Technology, Holoeye Photonics AG, http://www.holoeye.com/download_daten/LCOS_Microdisplays.pdf
  • [7] 3D mapping of turbulence: a laboratory experiment, European Organisation for Astronomical Research in the Southern Hemisphere, www.eso.org/~lelouarn/cone_exp_sub.ps.gz
  • [8] Mu, Q., Cao, Q., Hu, L., Li, D., Xuan, L. (2006). An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device. Opt. Express, 14,8013-8018.
  • [9] Pache, C., Westphal, K., Parent, J., Franco-Obregon, A., Depeursinge, C., Egli, M. Digital holographic microsopy for the study of morphological changes in cells under simulated microgravity condition, www.lynceetec.com/downloads/ConfProc/ESA_Angers09_Pache.pdf
  • [10]Kozacki, T., Kujawińska, M., Finke, G., Hennelly, B., Pandey, N. (2012). Extended viewing angle holographic display system with tilted SLMs in a circular configuration. Appl. Opt., 51, 1771-1780.
  • [11]Eriksen, R., Daria, V., Gluckstad, J. (2002). Fully dynamic multiple-beam optical tweezers. Optics Express, 10, 597-602.
  • [12] Krzewina, L.G. (2006). Structured light for three-dimensional microscopy. Ph.D. Thesis. University of South Florida.
  • [13] Hongying, Z.H., Mavandadi, S., Coskun, A.F., Yaglidere, O., Ozcan, A. (2011). Optofluidic Fluorescent Imaging Cytometry on a Cell Phone. Anal. Chem., 83(17), 6641-6647.
  • [14] Lizana, A., Martin, N., Estapé, M., Fernández, E., Moreno, I., Márquez, A., Iemmi, C., Campos, J., Yzuel, M.J. (2009). Influence of the incident angle in the performance of Liquid Crystal on Silicon displays. Optics Express,17, 8491-8505.
  • [15] Lizana, A., Marquez, A., Moreno, I., Iemmi, C., Campos, J., Yzuel, M.J. (2008). Wavelength dependence of polarimetric and phase-shift characterization of liquid crystal on silicon display. J. Europ. Opt. Soc. Rap. Public, (3), 08012.
  • [16] Frumker, E., Silberberg, Y. (2007). Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulator. J. Opt. Soc. Am. B, 24(12), 2940-2947.
  • [17] www.holoeye.com
  • [18] Bergeron, A., Gauvin, J., Gagnon, F., Gingras, D., Arsenault, H.H., Doucet, M. (1995). Phase calibration and applications of a liquid-crystal spatial light modulator. Appl. Opt., 34(23), 5133-5139.
  • [19] Xun, X., Cohn, R.W. (2004). Phase calibration of spatially nonuniform spatial light modulators. Appl. Opt., 43(35), 6004-6006.
  • [20] Kozacki, T. (2011). Holographic display with tilted spatial light modulator. Appl Opt., 50(20), 3579-3588.
  • [21] Kacperski, J., Kujawinska, M. (2006). Active, LCoS based laser interferometer for microelements studies. Optics Express, 14(21), 9664-9678.
  • [22] Lizana, A., Moreno, I., Marquez, A., Iemmi, C., Fernandez, E., Campos, J., Yzuel, M.J. (2008). Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effect in diffractive optics. Optics Express, 16 (21), 16711-16722.
  • [23] Márquez, A., Moreno, I., Iemmi, C., Lizana, A., Campos, J., Yzuel, M.J. (2008). Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization. Optics Express, 16, 1669-1685.
  • [24] Carrada, R., Arrizon, V. (2011). Accurate generation of structure light fields by means of phase synthetic holograms. In Proc. of SPIE 8011, 80111Y-1 - 80111Y-10.
  • [25] Curtis, E.J., Koss, B.A. Grier, D.G. (2007). Dynamic Holographic Optical Tweezers. The University of Chicago, http://physics.nyu.edu/grierlab/dynamic5b/dynamic5b.pdf
  • [26] Prasad, S., Torgersen, T.,Pauca, V.P., Plemmons, R. (2002). Integrated Optics Systems for Image Quality Control. In Proc. AMOS Technical Conference, Maui, HI.
  • [27] Ashok, A., Neifeld, M.A. (2005). Engineering the Point spread function for super-resolution from multiple low-resolution sub-pixel shifted frames. In Proc. of OSA Annual Meeting.
  • [28] Dowski, E.R., Cathey, W.T. (1995). Extended Depth of Field through Wavefront Coding. Appl. Opt., 34(11), 1859-1866.
  • [29] Porras, R., Vazquez-Montiel, S., Castro, J. (2004). Wavefront coding technology in the optical design of astronomical instruments. In Proc. of SPIE, 5622, 796.
  • [30] Glückstad, J., Palima, D. (2010). Generalized Phase Contrast. Applications in Optics and Photonics, Series: Springer Series in Optical Sciences, 146.
  • [31] Porras-Aguilar, R., Ramirez-San-Juan, J.C., Baldovino-Pantaleon, O., May-Arrioja, D., Arroyo Carrasco, M.L., Iturbe-Castillo, M.D., Sánchez-de-la-Llave, D., Ramos-Garcia, R. (2009). Polarization-controlled contrasted images using dye-doped nematic liquid crystals. Opt. Express, 17, 3417-3423.
  • [32] Vorontsov, M.A., Justh, E.W., Beresnev, L.A. (2001). Adaptive optics with advanced phase-contrast techniques. I. High-resolution wave-front sensing. J. Opt. Soc. Am. A, 18(6), 1289-1299.
  • [33] Warber, M., Zwick, S., Hasler, M., Haist, T., Osten, W. (2009). SLM-based phase-contrast filtering for single and multiple image acquisition. In Proc. of SPIE,7442, 74420E.
  • [34] Kujawinska, M., Gorecki, C., (2002). New challenges and approaches to interferometric MEMS and MOEMS testing. In Proc. of SPIE, 4900, 809.
  • [35] Krężel, J., Kujawińska, M., Mohr, J., Guttman, M., Wissmann, M., Tonchev, S., Parriaux, O. (2011). Integrated microinterferometric sensor for in-plane displacement measurement. Appl. Opt., 49(32), 6243-6252.
  • [36] Post, D., Han, B., Ifju, P. (1993). High Sensitivity Moire Interefrometry, Springer Verlag, Berlin.
  • [37] Sutkowski, M., Kujawinska, M. (2000). Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms. Optics and Lasers in Engineering, 33(30), 191-201.
  • [38] Schnars, U., Juptner, W. (2001). Digital Holography. Springer-Verlag, Berlin, Germany.
  • [39] Meeser, T., von Kopylow, C., Falldorf, C. (2011). Advanced Digital Lensless Fourier Holography by means of a Spatial Light Modulator. In Proc. of SPIE, 8082, 808206.
  • [40] Yamaguchi, I., Zhang, T. (1997). Phase-shifting digital holography. Optics Letters, 22(16), 268-270.
  • [41] Kozacki, T. (2011). Holographic display with tilted spatial light modulator. Appl. Opt., 50, 3579-3588.
  • [42] Finke, G., Kozacki, T., Kujawinska, M. (2010). Wide viewing angle holographic display with a multi-spatial light modulator array. In Proc. of SPIE, 7723, 77230A.
  • [43] Kang, H., Fujii, T., Yamaguchi, T., Yoshikawa, H. (2007). Compensated phase-added stereogram for real-time holographic display. Optical Engineering, 46(9), 095802.
  • [44] Yamaguchi, T., Okabe, G., Yoshikawa, H. (2007). Real-time image plane full-color and full-parallax holographic video display system. Optical Engineering, 46(12), 125801.
  • [45] Yaraş, F., Kang, H., Onural, L. (2011). Circular Holographic Video Display System. Optics Express, 19 (10), 9147-9156.
  • [46] Maaboud, N.F.A., El-Bahrawi, M.S., Abdel-Aziz, F. (2010). Digital holography in flatness and crack investigation. Metrol. Meas. Syst., 17(4), 583-588.
  • [47] Kozacki, T. (2010). On resolution and viewing of holographic image generated by 3D holographic display. Optics Express, 18, 27118-27129.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0105-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.