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Monitoring of fatigue life of mechatronic elements 
using spectral method for fatigue life assessment 

including the mean stress value
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Abstract: The paper presents a proposal of accounting the mean 
stress value in the process of fatigue life assessment using spec-
tral method in terms of monitoring the fatigue life of mechatronic 
elements. The existing approaches are being discussed, and 
some chosen stress models used to take into account the influ-
ence of the mean stress value in the process of the determination 
of fatigue life are being introduced. The authors refer to a broad 
range of widely used models proposed by Soderberg, Goodman, 
Morrow, Gerber, and Kwofie. Those models can be used to deter-
mine the Power Spectral Density Function (PSDF) of the stress 
after transformation due to the mean value. Such a transforma-
tion is of great importance in fatigue life assessment with spec-
tral method since PSDF is the quantity which defines loading and 
should also include information about mean stress. Determination 
of power spectral density of transformed stress allows the use of 
well-known models used in the spectral method, which in principle 
does not include the effect of the mean stress on fatigue life.

Keywords: mean stress; fatigue life assessment; random loading; 
power spectral density function

1.	Introduction

Machines, as well as mechatronic components being subjected 
to variable loads, require constant supervision during opera-
tion due to the emerging phenomenon of material fatigue. 
Also, when designing new constructions or modification of 
nodes of machine elements, it is required to check their load 
capacity and fatigue life before finally being put into opera-
tion. Such kind of verifications are performed in laboratories 
carrying out fatigue tests or, if it is not possible because of 
e.g. the size of element or cost of the tests, calculations are 
made with a view to the best possible estimate of fatigue life. 
Method of calculations depends of the character of the load. 
In the case of load-amplitude with no significant mean value, 
the expected number of cycles to fatigue crack initiation can 
be read out directly from S-N curve, for example, from well 
known Wöhler curve. If there are significant mean values in 
the stress history, then their effect must be taken into account 
while assessing fatigue life. For this purpose you can use the 
charts to take account of the impact of the mean load, for ex-
ample, Smith diagram or Wöhler curves drawn up for various 
cycle asymmetry coefficients R = smin/smax. If the diagrams 
or curves of this type are not available, then appropriate 
mean stress effect models should be used while calculations.

2.	Mean value in random loading

Determination of fatigue life under variable amplitude or 
random loading is generally done in the time domain using 

a cycle counting algorithm determining the cycles from the 
loading history, using a chosen model to describe the influence 
of the mean load on fatigue and the hypothesis of summation 
of fatigue damage. Łagoda et al. [1] presents fatigue tests 
under uniaxial random tension-compression with and without 
mean value performed on samples made of 10HNAP steel. 
They proposed an algorithm for calculating the fatigue life 
using rainflow cycle counting method and the linear hypoth-
esis of fatigue damage summation by Palmgren-Miner. The 
authors of this work have analyzed three ways to take into 
account the influence of the mean value, see fig. 1, which are:
a) 	method I, not taking into account the mean value,
b)	method II, taking into account the influence of the mean 

value by transforming each of the cycle amplitude obta-
ined from rainflow algorithm on the basis of their local 
mean value (rainflow cycle mean value),

c) 	method III, taking into account the influence of the mean 
value by transforming the whole load course on the basis 
of its global mean value before the cycle counting.
In the work by Łagoda et al. [1] the K coefficient has 

been introduced, which allows to calculate the transformed 
amplitude according to the method II

	 s s s= ⋅ ( ),aTi ai i miK 	 (1)

for the i-th cycle with amplitude sai and the mean value 
smi  specified by the rainflow algorithm from a registered part 
of the random course. Method III is based on the principle of 

Fig. 1. 	Three methods for calculating the fatigue life Tcal according 
to Łagoda et al. [1]

Rys. 1. 	Trzy metody obliczenia trwałości zmęczeniowej Tcal   

(według Łagody i in. [1])
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the transformation of the whole random stress course using 
the global mean value sm

	 [ ]s s s s= - ⋅( ) ( ) ( )T m mt t K ,	 (2)

Amplitude of the transformed cycle saTi in this case is 
obtained directly by counting cycles of the course sT(t) using 
rainflow cycle counting algorithm. Summation of fatigue 
damage is done according to the formula

	 s=

= ∑
1 ( )

n
i

i aTi

nD
N

,	 (3)

where: D – fatigue damage parameter, ni – the number of 
cycles of amplitude saTi, N(saTi) – the number of cycles deter-
mined from S-N curve (R = -1) for the transformed ampli-
tude saTi. Fatigue life Ncal expressed in cycles is determined 
from the formula

	 = blok
cal

NN
D

,	 (4)

where Nblok  is the number of counted cycles of the ana-
lyzed block of the stress course. The study carried out in 
[1] showed, that for the case of a stationary, random and 
symmetrically distributed relative to the mean value stress 
course the methods II and III are equivalent and can be 
used interchangeably in the calculations. In special cases, 
the K coefficient is determined from the formulas derived on 
the basis of the adopted model to take account of the mean 
stress. In the literature you will find a significant number of 
models of this type [1, 2] for which the K coefficient takes 
the form presented in tab. 1.

Fatigue life can be determined also in the frequency domain 
using a stochastic analysis of random processes. This method 
is known in the field of fatigue life assessment under the name 
spectral method and a lot of approaches including uniaxial 
and multiaxial cases were elaborated using this method [3, 6]. 
Taking into account the mean stress in this method is rather 
a difficult task, because the stress is represented by a power 
spectral density function, which contains information about 
the occurring locally and globally mean value in a way that 
is difficult to use in practice. In literature, however, we can 
find only a few suggestions on this issue. Kihl and Sarkani 
[3] and Sarkani et al. [4] show the effect of the mean value 
on fatigue life of welded steel joints. The tests were set to be 
run under both cyclic and random loadings with non-zero 
and zero mean stress value. The authors derived a formula 
to compute the expected number of cycles to fatigue failure 
in the case of random loads with extremes of Rayleigh distri-
bution with a nonzero mean value of stress
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where: Ncal – number of cycles to fatigue failure, A and B – con-
stant and slope of the Wöhler curve log(sa)  =  A  +  B  ×  log(N), 
sx – is the RMS stress value of the narrow-band random 
loading, Γ(·) – is the gamma function, sm – global mean 
value of the random load, Rm – tensile strength. It is easy 
to notice that in the eq. (10), the part being responsible for 
taking into account the mean value is (1  –  sm/Rm)–B, which 

modifies the expected cycle number till the fatigue failure 
determined by the narrow-band Miles formula [5].

3.	PSD function of a random process 
with mean value

Let us consider an example of one-dimensional stationary 
random process x(t) showing the property of ergodicity. 
Assuming that x(t) represents the physical signal is often 
convenient to present as the sum of static component xm and 
dynamic or fluctuant component xd(t) [7, 8]

	 = +( ) ( )m dx t x x t .	 (11)

Static component can be described by the expected value 
(mean value in deterministic case) given by the formula

	
→∞

= ∫
0

1lim ( )
T

m T
x x t dx

T
.	 (12)

And the dynamic component by the signals variance

	
[ ]µ

→∞
= -∫ 2

0

1lim ( )
T

x mT
x t x dt

T
.	 (13)

The variance, however, does not describe the spectral struc-
ture of a random process, and this information is essential for 

Tab. 1.	 Formulas for the K coefficient according to the chosen mod-
els [1, 2]

Tab. 1.	 Wzory na współczynnik K według wybranych modeli [1, 2]

Eq. No. According to: Formula
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Eq. (9) Kwofie sα
=

 
- ⋅  

1

exp
K

m

m

K

R

Ks, KGo, KM, KGe, KK – coefficients determined on the basis of 
appropriate models of Soderberg, Goodman, Morrow, Gerber 
and Kwofies, respectively,
Re – plasticity limit,
Rm – tensile strength,
bf – fatigue strength coefficient,
a – mean stress sensitivity of the material [2].



102

Nauka     

the proper estimation of the number of cycles and the ampli-
tude distribution of the load during the fatigue calculations. 
Therefore for this purpose the power spectral density function 
is being used. PSD of the signal describes the overall structure 
of a random process using the spectral density of root mean 
square of the physical signal in question. This value can be 
determined for the interval from f   to f  + Δf using a central-pass 
filter and averaging the square on the output of the filter [7]

	 →∞
Ψ ∆ = ∆∫ 2

0

1( , ) ( , , ) ,lim
T

x
T

f f x t f f dt
T

	 (14)

where: Yx – the mean square value of the process x(t), T – 
time of the observation, x(t, f, Df) – component of x(t) in 
the frequency range from f to f + Df. For small values of Df 
the eq. (14) shows the one-sided PSD function
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A characteristic feature of the Gx(f) function is the relation 
to the autocorrelation function. In particular, for stationary 
signals, these functions are closely related by the Fourier 
transformation

	
π ττ τ

∞
-

-∞

= ∫ 2( ) 2 ( ) ,j f
x xG f R e d 	 (16)

where
	 	

	
τ

τ τ
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is the autocorrelation function of the signal x(t). Mean value 
xm of the random process can be determined from the auto-
correlation function

	 = ∞( ),m xx R 	 (18)

and the mean value of x(t) is also a function of the PSD pre-
sented as a Dirac function at zero frequency

	
δ

+

-

= ∫
0

0

(0) ( )m xx G f df .	 (19)

The eq. (19) shows, that the mean value is equal to the 
positive square root of the ‘field’ underlying the Dirac func-
tion. This is an abstract field, as Dirac function takes the value 
+   for an infinite small interval. For this reason, the direct 
use of eq. (19) to determine the expected value on the basis 
of a PSD function of a random function in practical cases is 
impossible. Numerical algorithms to estimate the PSD func-
tions are subjected to some restrictions coming from the basic 
frequency resolution. Also, the value of PSD function for f = 0, 
i.e. Gx(0), results from the mean value x(t) and from the mean 
square value of a random process from the interval (0, Df ). 
Proper separation of these two values is impossible without 
additional information such as of the static value of the pro-
cesses xm. Therefore, in practice, we analyze those two values 
separately, the dynamic and static component of the random 
process according to eq. (11).

4.	PSD function of a transformed stress 
course

The transition of the signal x(t) by an linear system with 
constant parameters determined by the impulse response 
h(t) and the transfer function H(f) describes the following 
relationships [7]:

	 0

( ) ( ) ( ) ,y t h x t dτ τ τ
∞

= -∫ 	 (20)

	 = 2( ) ( ) ( ),y xG f H f G f 	 (21)

where y(t) – output signal of the system, Gx(f) and Gy(f) –
PSD’s of input and output, respectively. From the eq. (21) 
we can notice that the power spectral density function of the 
output signal can be calculated knowing the gain factor |H(f)| 
of the system. Fig. 2(a) shows schematically the transition 
of the signal x(t) through a linear system. Spectral method 
for fatigue life determination uses PSD function to describe 
the stress state directly in the frequency domain. If the 
stress course includes a static and a fluctuant component 
then the transformed course should be computed according 
to the eq.  (2). Treating the fluctuant component of the 
course [s(t) -  sm] as an input signal of an linear system with 
constant gain factor |H(f)| = K(sm) we can determine the 
PSD of a transformed stress

	 [ ]=s ss
2( ) ( ) ( ),T mG f K G f 	 (22)

where G
s
(f  ) – power spectral density of a fluctuant compo-

nent of the stress course. Fig. 2b presents the interpretation 
of the linear process of strain transformation due to the 
mean value, which can be compared to transition of a signal 
through a linear system, fig. 2(a). Eq. (22) allows the use 
of different forms of K(s

m
) factors, for example, described by 

equations (5)–(9), in the process of determining the fatigue 
life by means of spectral method taking into account the 
static stress component. 

If we consider a multiaxial loading case, then the transfor-
mation due to the mean stress has to be performed directly 
after crossing from the multiaxial stress state to the uniaxial, 
using appropriate multiaxial fatigue criteria’s defined in the 
frequency domain. As an example we can use the criterion 
proposed by Macha [5] or Preumont and Pierford [5, 6, 9]. 
In this case the hydrostatic pressure value is used instead of 
the mean stress. It is a common and at the same time the 
simplest treatment used in the spatial stress state [6].

The main advantage of the proposed solution is that the 
transformation is subjected to power spectral density function 
before using known spectral models to determine fatigue life.

This gives the possibility of applying fatigue formulas in 
the spectral method developed for narrow-band frequency 
and the more universal solutions correctly describing most of 
the random loadings used in the fatigue life assessment [5].

Such a method is proposed by Dirlik [10] which is deve-
loped by using the empirical formula describing the proba-
bility density distribution of amplitudes ranges

	
s

- - - 
∆ = + + 
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where: Z, K1, K2, K3, K4, R – factors which are functions of 
the first five moments mk (k = 0, …, 4) of the PSD function 
of transformed stress

	
s

∞

= ∫
0

( ) k
k Tm G f f df .	 (24)

Fatigue life is calculated using the selected hypothesis of 
fatigue damage accumulation, e.g. for a linear Palmgren-
Miner hypothesis having regard to the amplitudes below the 
fatigue limit we obtain

	

s s
s

∞=
∆ ∆
∆∫

0

1
( )
( )

calN
p d
N

	 (25)

where the number of cycles N(Ds) for stress range Ds is 
calculated on the basis of S-N curve

	

ss s
-∆ ∆ =   0( )

2

m
m
afN N .	 (26)

5.	Computation algorithm

In order to calculate the fatigue life using the spectral method 
and taking into account the influence of the mean stress on 
fatigue life you should follow these steps:
a)	 designate or define PSD function of the fluctuant com-

ponent of the stress course Gs(f) and establish its static 
part sm,

b)	 calculate the coefficient K(sm) according to the right 
model, eq. (5)–(9). The choice of model depends of the 
mean stress value sensitivity of the material,

c)	 calculate PSD of then transformed stress G
sT(f) according 

to the eq. (22),
d)	 calculate the fatigue life using spectral method formulas, 

i.e. eq. (23) and (25) [5, 6].

6.  Conclusions and observations

Based on the literature research it can be stated, that there 
are no papers that would propose the transformation of the 

power spectral density function of the stress, taking into 
account the influence of the mean stress value on the fatigue 
life. The presented equation (22) allows the calculation of 
the PSDF of the transformed stress, using models that are 
well known and widely verified in experimental researches. 
The proposal of Kihl and Sarkani [3] and Sarkani et al. [4] 
uses a Rayleigh amplitude distribution approximation, which 
reduces the area of application of the eq. (10) only to nar-
rowband processes. The method proposed by the authors 
doesn’t have this limitation and therefore allows a wide usage 
of many formulas used to predict the fatigue life by means 
of the spectral method. Compared with the time domain 
fatigue life prediction methods, the spectral method shows 
greater efficiency and it can be used there, where a multipli-
cand fatigue calculation is required (constructions optimiza-
tion, fatigue damage maps etc.).

The experimental verification should be performed to verify 
the correctness of the fatigue calculations evaluated accor-
ding to the proposed method, nevertheless the transforma-
tion of the PSD function in the spectral method is equiva-
lent to the eq. (2) in the time domain.
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Fig. 2.	 One-input linear system (a) and interpretation of the line-
ar process of strain course transformation due to the mean 
value (b)

Rys. 2.	Jednowejściowy układ liniowy (a) oraz interpretacja trans-
formacji liniowej przebiegu naprężenia ze względu na war-
tość średnią (b)
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Monitorowanie trwałości zmęczeniowej elementów 
mechatronicznych przy wykorzystaniu metody 

spektralnej wyznaczania trwałości zmęczeniowej 
z uwzględnieniem wartości średniej naprężenia

Streszczenie: Praca przedstawia propozycję uwzględniania war-
tości średniej naprężenia w procesie wyznaczania trwałości zmę-
czeniowej przy wykorzystaniu metody spektralnej w odniesieniu do 
monitorowania trwałości zmęczeniowej elementów mechatronicz-
nych. Opisano obecne podejścia oraz przedstawiono część wybra-
nych modeli uwzględnienia wartości średniej naprężenia w procesie 
obliczania trwałości zmęczeniowej. Autorzy odnoszą się do szerokiej 
gamy stosowanych modeli zaproponowanych m.in. przez Soderberga, 
Goodmana, Morrowa, Gerbera oraz Kwofie’go. Te modele mogą 
zostać wykorzystane  w celu wyznaczenia Gęstości Widmowej Mocy 
(GWM) naprężenia po transformacji ze względu na wartość średnią. 
Taka transformacja jest bardzo ważna w wyznaczaniu trwałości 
zmęczeniowej przy użyciu metody spektralnej, ponieważ Funkcja 
Gęstości Widmowej Mocy (FGWM) jest wielkością, która definiuje 
obciążenie (przy czym powinna również uwzględniać informacje 
o wartości średniej). Wyznaczanie Gęstości Widmowej Mocy trans-
formowanego naprężenia pozwala na wykorzystanie znanych modeli 
uwzględnienia wartości średniej w metodzie spektralnej, która zasad-
niczo nie obejmuje wpływu wartości średniej naprężenia na trwa-
łość zmęczeniową. 

Słowa kluczowe: wyznaczanie trwałości zmęczeniowej; obcią-
żenia losowe; naprężenie średnie; funkcja gęstości widmowej mocy
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