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An application of generalized least squares 
method to the conduction heat transfer problem
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Abstract: Article presents an application of generalized least 
squares method to heat transfer problem (the steady-state one-
dimensional heat conduction). The theoretical basis of mathe-
matical method was presented as well as general model of con-
duction heat transfer problem was introduced. During model 
creation boundary and internal (additional) measurements of 
temperature in the plate were used. In article the different loca-
tions of additional measuring points were checked and the local 
and global error of obtained models were determined.
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1.	 Introduction

The mathematical modeling of heat transfers problems 
often use numerical methods which allows for finding ap-
proximate parameters describing real system. Those solu-
tions usually are not precise – due to the lack of different 
types of errors. Especially in the case when physical me-
asurements are used, it is important to find deviation of 
obtained results (which derives from measured data).The 
generalized least squares method lets for finding the most 
accurate results (models parameters) in the case when the 
number of measurements exceeds the amount of data ne-
cessary to define the model (there is additional informa-
tion about system available, but all data are affected by 
measurement error).

Article presents the application of generalized least squ-
ares method to the steady-state one-dimensional heat con-
duction problem. To define the temperature profile in the 
plate only two measurements of temperature have to be 
made. But the measurements are affected by measurement 
instrument error so obtained profile is not precise. It is chec-
ked how additional temperature measurements affect the 
error distribution. Several cases with different error types 
(percent and constant error) and different number of addi-
tional measuring points are analyzed. Analyze of different 
conditions and possibilities of additional measurement lets 
for proper planning of experiment.

Presented methodology can be applied to many other 
problems, including more complicated heat transfer issues.

2. Mathematical method

The least squares method is used in finding approxima-
te solution of overdetermined systems of equations. Over-
determined equations sets have more equations than unk-
nowns. Alternative methods of finding solution in that type 
of problems are more complicated and less popular. The le-
ast squares method was introduced by Legendre (1805) and 
Gauss (1809). Initially it was used in geodetic calculations 

and then it found an application in astronomy and science. 
Moreover this method is the basis of modern error analysis.
The least squares method finds the most likely value of va-
riable which was measured with experimental errors in se-
veral different experiments. This method can be used also 
in more complicated problems with many unknown varia-
bles, defined as a functions of measured values. The gene-
ralized least squares method (GLS) with assumed normal 
error distribution lets for finding values of unknown varia-
bles with their errors.

Generalized least squares method (unified least squares 
method) was introduced in 1976 by Mikhail and Acker-
mann. Nowdays it is widely used in energy science pro-
blems, for example to model heat and mass transfer or pre-
pare balances of energy systems [2, 3, 5].

2.1.	 Least squares method

The basic idea of least squares method is based on the Le-
gendre postulate. Value of measurement yj can be defined 
as sum of unknown value x and measurment error εj:

jj xy ε+= .
The goal is to find values of εj which gave minimal sum 

of squared measurement errors:

( )∑ ∑ =−=
j j

jj yx min22ε .

2.2.	 Generalized least squares method

Mathematical models for real problems consiss usually 
many complicated non-linear differential equations. Fin-
ding algebraic solution is often very laborious or even im-
possible. Those problems, on the other hand, can be so-
lved by using numerical methods and linearization of the 
equations [1]

Assume, that problem is defined by the following set of 
J equations:

( ) Jjfj ,,2,1,0, …==∗∗ xu .

There are two different types of variables in equations: 
experimentally measured (vector u*) and unknowns varia-
bles which values is looked for (vector x* represents best 
approximation of unknowns). The goal is to find vectors u* 
and x*, which satisfied given equations set most precisely.
For initial values of measured variables u and unknown ap-
proximations x the model equation set is not satisfied pre-
cisely:

( ) Jjf jj ,,2,1,w, …=−=xu ,

where wj is error (residuum) of j equation.
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The corrections vector are defined:

u* = u + v,
x* = x + y,

where v is experimental measurements correction vector 
and y is unknowns correction vector. 

Finally it can be written following equation:

( ) Jjfj ,,2,1,0, …==++ yxvu .

In mathematical models fj functions are unrestricted al-
gebraic functions. Least squares method requires linear con-
straint equations. If the fj functions are differentiable it is 
possible to expanse them into Taylor series in the neigh-
borhood of the point P(u, x). Omission of higher derivati-
ves lets for linearization of constraint equations.

The model constraints after linearization can be written 
in the following form:

ABVB = WB,

where AB i VB are defined simultaneously for experimen-
tal measurements and unknowns:

AB = [A, B],
VB = [v, y]T.

A and B are Jacobi’s matrixes defined as:
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The least squares methods requires minimization of the 
following function:
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 where v – experimental measurements correction vector; 
y – unknowns correction vector; vi – element i of vector v; 
yj – element j of vector y; si, sj  – error of i measurement 
(j unknown).

Covariance matrix is defined as:
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Where CS and CSX are covariance matrixes for experi-
mental measurements and unknowns with their variance 
values on diagonal: 2

iσ  and 2
jσ  (it is assumed that 

2
jσ >> 2

iσ ).
The solution of minimization problem is following:

VB = CBAB
T FB

-1 WB

where:
FB = ABCBAB

T

Final covariance matrix after application of least squ-
ares method is:

CVB = CB – CBAB
T FB

-1 AB CB

or in the matrix form:

U UX
T

UX
V

 
=  

 
B

X

C C
C

C C
.

Matrix CVB represents the measurement errors and it is 
possible to obtain from it the measurement’s standard de-
viation values.

3. Conduction heat transfer problem

Presented methodology was applied to the steady-state one-
dimensional heat conduction problem. 

Considered wall has 0.1 m width, what is significantly 
less than other dimensions – because of that the one-di-
mensional heat transfer model can be used.

Heat transfer by conduction can by described by the ge-
neral Fourier-Kirchhoff equation:

Vp qT
t
Tc �+∇=

∂
∂ 2λρ ,

where:
T – temperature [K], t – time [s], l – thermal conductivity 
[W/(m×K)], ρ – density [kg/m3], cp – heat capacity 
[J/(kg×K)], Vq�  – heat source.

The investigated problem assumes that system is in the 
steady state:

0=
∂
∂
t
T

,

and there is no additional heat source:

0=Vq� .

Moreover, for one dimension problem it can be assu-
med that temperature is one variable function dependent 
from x coordinate

T  = f (x).

On the basis of following assumptions the final form of 
Fourier-Kirchhoff equation for the one-dimensional steady-
state heat transfer problem can be presented:

 ( ) .02

2

=
dx

xTd

The wall was divided into 10 modules (11 variable po-
ints; presented on fig. 1) and numerical modeling of diffe-
rential equation was used:

 ( ) ( ) ( ) ( )
( ) .0121

22

2

=
∆

−+−+≅
x

iTiTiT
dx

xTd

Presented equation was used to prepare constraint equ-
ation set.
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It is assumed that temperatures on the ends of the pla-
te are equal 110 °C and 20 °C.

Measured variables u are temperatures on the bounda-
ries of the plate and additional temperatures inside (one or 
two variables). Unknowns x are temperatures in the rest 
measuring points.

In the next chapter the several possibilities of choosing 
additional measuring points are presented.

4. Results

Figure 2 presents analysis of the case with one additional 
point inside the plate. The absolute error was constant for 
all points and equal 0.5 K. On the graphs measured points 
are pointed by black dot. Lines represents local error distri-
bution for different analyzed cases – different placement of 
additional measuring point.

Figure 3 shows the sum of diagonal elements of covarian-
ce matrix CVB for the presented case. It can be noticed that 

for constant measurement error the best choice for additio-
nal measuring point is the place close to the boundary of 
a plate (point 1 or point 9) and the results for both plate-
’s sides are symmetrical.

The next analyzed case was analogical to the previous 
one, but instead of constant measurement absolute error 
the percentage relative error value equals to the 2  % of me-
asured value was assumed. The results of analysis are pre-
sented in the fig. 4 and fig. 5. It can be noticed that simi-
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Fig. 2. 	 Error distribution of temperatures determined on the ba-
sis of 3 measurement (pointed with black dots) with er-
ror 0.5 K. Different lines represent error based on diffe-
rent measurement points distribution

Rys. 2. 	Rozkład błędów temperatury wyznaczonej na podstawie 
3 pomiarów (oznaczonych czarnymi punktami) z błędem 
0,5 K. Poszczególne linie pokazują rozkład w przypadku 
różnego doboru punktów pomiarowych

Fig. 3. 	 Sum of diagonal elements of covariance matrix CVB for 
case with 3 measurements with standard deviation 0.5 K

Rys. 3. 	 Suma elementów diagonalnych macierzy kowariancji CVB 
dla przypadku z 3 pomiarami z odchyleniem 0,5 K

Fig. 4. 	 Error distribution of temperatures determined on the ba-
sis of 3 measurement (pointed with black dots) with er-
ror 2  %. Different lines represent error based on different 
measurement points distribution

Rys. 4. 	Rozkład błędów temperatury wyznaczonej na podstawie 
3 pomiarów (oznaczonych czarnymi punktami) z błędem 
2 %. Poszczególne linie pokazują rozkład w przypadku 
różnego doboru punktów pomiarowych

Fig. 5. 	 Sum of diagonal elements of covariance matrix CVB for 
case with 3 measurements with standard deviation 2 %

Rys. 5. 	Suma elementów diagonalnych macierzy kowariancji CVB 
dla przypadku z 3 pomiarami z odchyleniem 2 %

Fig. 1. Plate divided for modules used in the model
Rys. 1. Podział płyty wykorzystany w modelu
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larly to the previous condition the additional point should 
be located next to the plate’s boundary, but in this case 
it should be end with higher temperature (we gain addi-
tional information in the part, where the biggest measure-
ment error occurs).

Analogical analysis can be prepared for the bigger num-
ber of additional points. Figure 6 presents results obtained 
for 2 additional points inside the plate (4 measuring points 
total) and constant measurement error. It is seen that the 
best results are obtained when the points are equally di-
stributed (for example, when one additional point is situ-
ated next to the end of plate, the second additional point 
should be placed next to the opposite end).

5. Conclusions

Article presents generalized least squares method and its 
application to the conduction heat transfer problem. All 
computations were conducted in MATLAB.  Presented me-
thodology and program implementation can be easy ap-
plied to many different configuration of the measuring sys-
tem as well as to another heat transfer problems. What is 
significant least squares method lets for taking into account 
the measurement errors and their influence for final results.
Presented results can be helpful in designing experimental 
measurements – they provide a method of minimalizing fi-
nal error of obtained results.

Fig. 6.	 Error distribution of temperatures determined on the ba-
sis of 3 measurement (pointed with black dots) with er-
ror 0.2 K. Different lines represent error based on diffe-
rent measurement points distribution

Rys. 6.	 Rozkład błędów temperatury wyznaczonej na podstawie 
3 pomiarów (oznaczonych czarnymi punktami) z błędem 
0,2 K. Poszczególne linie pokazują rozkład w przypad-
ku różnego doboru punktów pomiarowych

A.

B.

Bibliography

1.	 Brandt S., Statistical and Computational Methods in 
Data Analysis, North-Holland Publishing Company, 
Amsterdam, Netherlands 1970.

2.	 Szargut J., Rachunek wyrównawczy w technice cieplnej, 
PAN, Komisja Energetyki, Wrocław 1984.

3.	 Szmyd J., Suzuki K., Kolenda Z., An interactive com-
putational – experimental methodology approach to con- 
vection and conduction heat transfer problems with 
uncertain specification, Proc. of EUROTHERM Sem. 
36 on Advanced Concepts and Techniques in Thermal 
Modeling, Poitiers, France, 1994, 277–283.

4.	 Taylor J., An Introduction to Error Analysis: The Stu-
dy of Uncertainties in Physical Measurments, Univer-
sity Science Books, USA, 1997.

5.	 Wroński P., Wyznaczenie rozkładów pól temperatury 
i strumieni ciepła w procesach wymiany ciepła przez 
przewodzenie, przy nadmiarze danych obarczonych błę-
dami, Praca magisterska, AGH, Kraków 1997.�

Wykorzystanie uogólnionej metody  
najmniejszych kwadratów  

w analizie przewodzenia ciepła

Streszczenie: Artykuł prezentuje zastosowanie uogólnionej 
metody najmniejszych kwadratów w analizie problemu trans-
portu ciepła (stacjonarne, jednowymiarowe przewodzenie cie-
pła). Zaprezentowano teoretyczne podstawy metody matema-
tycznej oraz wprowadzono ogólny model przewodzenia ciepła. 
Do stworzenia modelu wykorzystano pomiary temperatury na 
brzegach płyty oraz dodatkowe, wewnętrzne punkty pomiaru. 
Sprawdzono wpływ wyboru różnych punktów pomiarowych na 
sumaryczny oraz lokalny błąd uzyskanych modeli matematycz-
nych.

Słowa kluczowe: uogólniona metoda najmniejszych kwadra-
tów, przewodzenie ciepła, błąd pomiarowy
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