mgr inż. Piotr Frydrych¹⁾, prof. nzw. dr hab. inż. Roman Szewczyk²⁾, dr inż. Jacek Salach¹⁾, mgr inż. Krzysztof Trzcinka²⁾

¹⁾ Instytut Metrologii i Inżynierii Biomedycznej Politechniki Warszawskiej

²⁾ Przemysłowy Instytut Automatyki i Pomiarów PIAP

Miniaturowe, dwuosiowe czujniki pola magnetycznego z rdzeniami z magnetyków amorficznych

W artykule przedstawiono koncepcję budowy dwuosiowych, transduktorowych czujników pola magnetycznego z rdzeniami z taśmy amorficznej. Jednocześnie przedstawiono nowatorską metodę kształtowania i badania charakterystyk magnesowania rdzeni ramkowych z taśmy amorficznej, wykorzystywanych jako rdzenie badanych czujników. Metoda ta umożliwia pomiar anizotropii magnetycznej rdzenia. Informacja o wartości anizotropii jest niezbędna przy budowie czujników dwuosiowych, a opisane do tej pory metody nie umożliwiały tego typu pomiarów.

MINIATURIZED, TWO AXIS MAGNETIC FIELD SENSORS WITH AMORPHOUS ALLOY CORES

Paper presents new conception of two-axis, fluxgate magnetic field sensors for measurements of Earth's magnetic field. Developed sensors utilizes soft amorphous alloys. Moreover paper presents new methodology of shaping and testing of magnetic characteristics of frame-shaped amorphous alloys cores utilized in such sensors. Presented methodology of testing enables direct measurements of magnetic anisotropy of amorphous alloy, what is required for development of two-axis fluxgate sensors.

1. WPROWADZENIE

Pierwsze w historii, praktyczne wykorzystanie pom iarów ziem skiego pola m agnetycznego zostało opisane w ksi ążce Zhu Yu "Rozm owy przy stole w Pingzhou" wydanej w 1119 roku w Chinach. Od tego czasu czujniki do detekcji i pom iaru pola m agnetycznego są przedmiotem ciągłych badań i prac rozwojowych. Jednak do tej pory wielu zagadnień technicznych nie udało się ostatecznie rozwiązać.

Szczególnie wa żnym obszarem rozwoju czujników do pom iaru pola m agnetycznego s ą miniaturowe czujniki do pom iaru pól m agnetycznych o nat ężeniu do oko ło 100 A/m, w szczególności ziem skiego pola m agnetycznego. Pom iary tego pola m ają zasadnicze znaczenie w pom iarach geodezyjnych [1], nawigacyjnych [2] oraz pom iarach na potrzeby systemów bezpiecze ństwa publicznego, szczególnie detekcji m etalowych elem entów urz ądzeń pirotechnicznych [3].

Z technicznego punktu widzenia, do pom iaru pola m agnetycznego w zakresie do 100 A/m mogą by ć wykorzystywane czujniki m agnetorezystancyjne [4], czujniki typu SQUID [5], czujniki optomagnetyczne [6] i czujniki transduktorowe [7]. Jednak m ożliwości zastosowania czujników SQUID i czujników optomagnetycznych w systemach na potrzeby bezpieczeństwa publicznego s ą bardzo ograniczone, ze wzgl ędu na ich znaczn ą ma sę oraz, w przypadku czujników SQUID, konieczno ści zapewnienia m ożliwości pracy nadprzewodnikowego elementu sensorowego w temperaturze 4 K (ciekłego helu). Dlatego w systemach na potrzeby

bezpieczeństwa publicznego są wykorzystywane czujniki magnetorezystancyjne i transduktorowe. Jednak czujniki magnetorezystancyjne, ze względu na konieczność zastosowania cewek ortogonalnych wytwarzających pole magnetyczne o znacznym natężeniu [8], są dość energochłonne. Szczególnie jest to niekorzystne w przypadku system ów mobilnych. Powoduje to konieczność dalszego rozwoju czujników transduktorowych, w szczególności w zakresie ich miniaturyzacji i doskonalenia technologii wytwarzania rdzeni stosowanych do ich budowy.

W referacie przedstawiono now a koncepcj ę budowy m iniaturowych, grubowarstwowych czujników transduktorowych, z rdzeniam i ze stopów am orficznych, um ożliwiających dwuosiowy pomiar pola m agnetycznego. Do tej pory tego typu czujniki um ożliwiały wyłącznie jednoosiowy pomiar pola m agnetycznego [9]. Barier ą w opracowaniu dwuosiowych czujników transduktorowych był brak m ożliwości pomiaru charakterystyk m agnetycznych magnetyków amorficznych w kierunku prostopadłym do kierunku taśmy. W referacie przedstawiono także tak ą me todę, co otworzy ło m ożliwość opracowania czujników dwuosiowych, nie prezentowanych do tej pory w literaturze światowej.

2. WYTWARZANIE MINIATUROWYCH RDZENI RAMKOWYCH Z TAŚM AMORFICZNYCH

Amorficzne stopy ultraszybkoch łodzone uzyskiwane s ą w form ie ta śm o grubo ści oko ło 25 µm [10]. Ta śmy te cechuj ą się znaczną twardością i krucho ścią, co ogranicza m ożliwość wycinania kształtek rdzeni, w szczególno ści na skal ę przemysłową. Z tego wzgl ędu w opracowanej technologii produkcji kszta łtek rdzeni opracowywanych grubowarstwowych czujników transduktorowych zastosowano m etodę fotolitograficzną. W ygląd m atrycy do fotolitograficznej produkcji rdzeni czujników transduktorowych przedstawiono na rys. 1.

W procesie produkcji rdzeni ram kowych, taśmy ze stopu am orficznego o składzie Fe₇₈Si₁₃B₉ (Metglas 2605 wyprodukowanego przez firm ę Hitachi Metals) o szeroko ści ta śmy 28 mm pokryto z jednej strony lakierem, a z drugiej strony warstw ą światłoczułą Positiv20. Nast ępnie warstw ę światłoczułą na świetlono prom ieniowaniem UV przez m atrycę przedstawion ą na rys. 1. W kolejnej fazie, ta śmy ze stopu am orficznego wytrawiono w roztworze nadsiarczanu sodowego, utrzym ywanego w stabilizowanej tem peraturze 55 °C. Nast ępnie, po wypłukaniu, zb ędne warstwy światłoczułe i lakierowe zosta ły zm yte rozpuszczalnikiem typu nitro.

Opracowana m etoda um ożliwia swobodne kszta łtowanie rdzeni z ta śm am orficznych o zróżnicowanym składzie (zarówno stopów na bazie żelaza, jak i niklu oraz kobaltu). W łaściwy dobór param etrów technologicznych procesu wytrawiania um ożliwił uzyskanie g ładkich krawędzi produkowanych rdzeni, jak również wysoki stopień powtarzalności produkcji.

3. NOWA METODA BADAŃ ANIZOTROPII MAGNETYCZNEJ

Pomiar charakterystyk magnesowania taśm magnetycznych odbywa się dla rdzeni zwijanych. Metoda ta umożliwia jedynie pomiar charakterystyki magnesowania w kierunku taśmy, przez co nie ma możliwości pomiaru anizotropii magnetycznej rdzenia.

Pomiary charakterystyki m agnesowania rdzeni ram kowych trawionych z ta śmy am orficznej nie mogą być zrealizowane poprzez nawinięcie uzwojenia na rdzeń. Rdzeń z taśmy amorficznej jest zbyt wiotki. Dlatego konieczne jest um ieszczenie wytrawionego rdzenia wewn ątrz sześciowarstwowej płytki drukowanej i wykonie uzwojeń w formie ścieżek na płytce, tak jak to przedstawiono na rys. 2.

Rys. 2. Rdze ń ram kowy wraz z uzwojeniem w form ie ścieżek sze ściowarstwowej p łytki drukowanej: 1 - rdzeń ramkowy, 2 - uzwojenie pom iarowe w osi*Y*, <math>3 - uzwojenie pom iarowe w osi*X*, <math>4 - uzwojenie magnesujące

W opracowanym układzie pomiarowym uzwojenie magnesujące zasilano ze źródła prądowego typu BOP36 firm y Kepco sterowanego napi ęciem. Sterowanie napi ęciowe odbywało si ę z generatora funkcyjnego AFG3021B firm y Tectronics. Ze wzgl ędu na niewielki przekrój taśmy ze stopu am orficznego, sygnał indukowany na uzwojeniach pom iarowych jest s łaby. Dlatego w torze pom iarowym zastosowano dwa ultraszybkie, niskoszum ne wzm acniacze operacyjne OPA637 firm y Analog Devices. Nast ępnie, wzm ocnione sygna ły pom iarowe z uzwojeń pom iarowych w osiach X i Y oraz sygna ł napi ęciowy proporcjonalny do pr ądu sterującego transduktor podawano na oscyloskop cyfrowy i przesy lano do kom putera PC. W tym komputerze, w fazie analizy wyników pom iarów, realizowano całkowanie numeryczne, które umożliwiało wyznaczenie wartości indukcji magnetycznej w rdzeniu zarówno w osi X, jak i w osi Y. Błąd wyznaczenia warto ści indukcji pola m agnetycznego B oszacowano na 30% między innymi ze wzgl ędu na problem y z pom iarem grubości taśmy spowodowane jej niejednorodnością.

4. BUDOWA CZUJNIKA TRANSDUKTOROWEGO W TECHNOLOGII GRUBOWARSTWOWEJ

Na rys. 3 przedstawiono budow \notin m iniaturowego czujnika transduktorowego o wym iarach 35 mm x 35 mm x 1mm, umożliwiającego dwuosiowy pom iar pola m agnetycznego. Uzwojenie m agnesujące (2) w tym czujniku wykonano tak sam o jak uzwojenie m agnesujące w układzie przedstawionym na rys. 2. Natom iast uzwojenia pom iarowe (3) i (4) (uzwojenia wyjściowe czujnika transduktorowego) w osi X i w osi Y oplatają cały czujnik.

Rys. 3. Opracowany m iniaturowy, dwuosiowy czujnik transduktorowy: 1 - rdze ń czujnika, 2 - uzwojenie m agnesujące *Y*, 3 - uzwojenie pom iarowe w osi*X*, <math>4 - uzwojenie pom iarowe w osi*Y*

W rezultacie działania pola mierzonego H_p , przebiegi indukcji w kolum nach rdzenia ramkowego odkształcają się niesymetrycznie. Dlatego w strumieniach magnetycznych $\Psi_x(t)$ i $\Psi_y(t)$ skojarzonych z uzwojeniam i pom iarowymi w osi X i osi Y (obejm ującymi obie kolum ny rdzenia ramkowego w danej osi) pojawia się składowa o częstotliwości dwa razy większej od częstotliwości przebiegu pr ądowego podawanego na uzwojenie steruj ące. W zakresie niewielkich, stałych pól m ierzonych H_p , amplituda tej drugiej harm onicznej jest proporcjonalna do mierzonego pola H_p . Zasada pracy przetwornika transduktorowego zosta ła opisana szczegółowo w pracach [11] i [12].

Przetwornik transduktorowy um ieszczono w cewkach Helm holtza um ożliwiających precyzyjne zadawanie wzorcowego pola m agnetycznego w zakresie do 100 A/m . Uzwojenie magnesujące czujnika zasilano ze źródła prądowego typu BOP36 firm y Kepco sterowanego napięciem. Sterowanie napięciowe odbywało się z generatora funkcyjnego AFG3021B firm y Tectronics. Natomiast w torze pom iarowym zastosowano precyzyjne wzm acniacze operacyjne OP27, zarówno dla toru pom iarowego w osi X jak i w osi Y. Zastosowanie ultraszybkich wzmacniaczy operacyjnych OPA637 nie by ło konieczne, poniewa ż sygna łem wyj ściowym z sensora jest druga harm oniczna prądowego przebiegu zasilaj ącego o cz ęstotliwości 1kHz. Filtrację i pom iar drugiej harm onicznej z przebiegu sygna łu wyjściowego z czujnika zrealizowano cyfrowo, po zarejestrowaniu tego sygnału na oscyloskopie cyfrowym.

5. WYNIKI BADAŃ CHARAKTERYSTYK RDZENIA AMORFICZNEGO ORAZ CZUJNIKA TRANSDUKTOROWEGO

Na rys. 5 przedstawiono p ętle histerezy m agnetycznej B(H) rdzenia ram kowego z ta śmy amorficznej ze stopu o sk ładzie Fe₇₈Si₁₃B₉ w stanie wyj ściowym (bez dodatkowej obróbki cieplnej) zmierzone przy cz ęstotliwości sinusoidalnie zmiennego natężenia pola m agnesującego równej 1200 Hz. Należy podkreślić, że pętle histerezy zarejestrowane w osi X i w osi Y mają zbliżony kształt. Jest to sprzeczne z powszechnie przyj ętym poglądem, że charakterystyki m agnesowania ta śmy am orficznej s ą znacz ąco różne w kierunku ta śmy i w kierunku prostopadłym do kierunku ta śmy [10]. Ewentualna silna anizotropowo ść ta śmy może by ć spowodowana przez naprężenia m echaniczne indukowane w trakcie procesu ultraszybkiego chłodzenia przy odlewaniu ta śmy. W takim przypadku gęstość energia anizotropii indukowanej naprężeniami może być wyznaczona z zależności [13]:

$$K_{\sigma} = \frac{3}{2}\lambda_s\sigma \tag{1}$$

w której λ_s to magnetostrykcja nasycenia materiału, zaś σ – wartość naprężeń. Ponieważ stop amorficzny o sk ładzie Fe₇₈Si₁₃B₉ w stanie wyj ściowym cechuje si ę m agnetostrykcją oko ło 30 µm/m, należy przypuszczać, że niewielka gęstość energii anizotropii naprężeń K_{σ} wynika z faktu, że naprężenia w łasne wytworzone w czasie produkcji ta śmy amorficznej z czasem uległy, relaksacji.

Rys. 5. P ętle histerezy m agnetycznej B(H) ta śmy ze stopu o sk ładzie Fe $_{78}$ Si₁₃B₉ w stanie wyjściowym, mierzone w kierunkach X i Y

Przedstawione na rys. 5 charakterystyki m agnesowania B(H) ta śmy ze stopu o sk ładzie Fe₇₈Si₁₃B₉ w stanie wyj ściowym dowodzą, że rdzenie z tego m ateriału mogą być wykorzystywane do opracowania czujników transduktorowych do pom iaru pola m agnetycznego w dwóch osiach. Do tej pory czujniki takie nie by ły opracowane, ze wzgl ędu na nies łuszne oczekiwanie silnej anizotropii ta śmy ze stopu o sk ładzie Fe₇₈Si₁₃B₉. Nale ży podkre ślić, że poglądy te nie m ogły być do tej pory zweryfikowane eksperym entalnie ze wzgl ędu na brak metodyki pomiaru charakterystyk magnesowania taśm amorficznych w dwóch osiach.

Na rys. 6 przedstawiono charakterystyki przetwarzania opracowanego, dwuosiowego, m iniaturowego czujnika transduktorowego, zróżnicowane ze względu na wartość skuteczną sinusoidalnego przebiegu pr ądu I_z zasilaj ącego uzwojenie m agnesujące. Analizowanym sygna łem wyjściowym z czujnika jest am plituda drugiej harm onicznej przebiegu zasilaj ącego U_{2f} , filtrowana z przebiegu uzyskiwanego na uzwojeniu pomiarowym.

Uzyskane wyniki potwierdzaj ą wysok ą czu łość opracowanego czujnika transduktorowego zarówno w osi X, jak i w osi Y, w szerokim zakresie pól m ierzonych H_p . Ponadto wy ższa czułość uzyskiwana jest dla m niejszych wartości skutecznych prądu zasilającego czujnik, co jest zgodne z oczekiwaniam i i m oże być wykorzystane do redukcji m ocy zasilania niezb ęd-nego do pracy czujnika.

Rys. 6. Charakterystyki przetwarzania opracowanego czujnika transduktorowego zró żnicowane na wartość skuteczną prądu zasilającego I_z : a) w osi X, b) w osi Y

6. PODSUMOWANIE

Przedstawiona w referacie metoda fotolitograficznej produkcji miniaturowych rdzeni z taśmy amorficznej um ożliwia wytwarzanie rdzeni ram kowych ze stopu o sk ładzie Fe ₇₈Si₁₃B₉. Rdzenie te cechują się gładkimi krawędziami i mogą być wykorzystywane w opracowywaniu różnego typu czujników, nie tylko czujników transduktorowych.

Nowatorska metodyka pomiaru charakterystyk magnesowania ramkowych rdzeni z magnetyków am orficznych um ożliwiła weryfikacj ę pogl ądów odno śnie warto ści g ęstości energii anizotropii w magnetyku amorficznym. Gęstość energii anizotropii ta śmy okazała się na tyle niewielka, że czujniki transduktorowe m ogą pracowa ć zarówno z wykorzystaniem kolum n rdzenia ramkowego w kierunku taśmy, jak i w kierunku prostopadłym do kierunku taśmy.

Opracowane egzem plarze czujników transduktorowych um ożliwiły praktyczną weryfikację ich param etrów funkcjonalnych. Zarówno charakterystyki opracowanych czujników w kierunku X, jak i w kierunku Y cechują się wysoką czułością. Ponadto czułość przetwarzania czujników transduktorowych ro śnie dla m niejszych wartości skutecznych prądu zasilającego czujnik, co m oże być wykorzystane do redukcji m ocy zasilania niezb ędnego do pracy czujnika.

BIBLIOGRAFIA

- 1. M. G. Drahor, T. Kurtulmus, M. Berge, M. Hartmann M. Speidel "Magnetic imaging and electrical resistivity tom ography studium in a Rom an military installation fund in Satala archeological site, northeastern Anatolia, Turkey" Journal of Archeological Science 35 (2008) 259.
- 2. R. Szewczyk, J. Salach, A. Bie ńkowski, R. K łoda, M. Safinowski "Testing of the three axis magnetometers for m easurements of the earth m agnetic field" Journal of Autom ation, Mobile Robotics and Intelligent Systems 4 (2009) 96.
- 3. P. Ripka, A. M. Lewis, J. Kubik "Min e Detection in Magnetic Soils" Sensor Letters 5 (2007) 15–18.
- 4. S. Tumański "Cienkowarstwowe czujniki m agnetorezystancyjne" Oficyna W ydawnicza Politechniki Warszawskiej, Warszawa 1997.
- 5. Z. Dunajski "Biomagnetyzm", WKŁ, Warszawa, 1990.
- 6. D. Gordon, R. Brown, J. Haben "Methods for measuring the magnetic field" IEEE Trans. Magn. 8 (1972) 48.
- 7. P. Ripka "Review of fluxgate sensors" Sensors and Actuators A33 (1992) 129.
- 8. S. Tumański "Czujniki pola m agnetycznego stan obecny i kierunki rozwoju" Przegl ąd Elektrotechniczny 2 (2004) 74.
- 9. P. Ripka "Magnetic Sensors and Magnetometers" Artech 2001.
- 10. R. O'Handley "Modern magnetic materials principles and applications" John W iley & sons, 2000.
- 11. F. Primdahl "The fluxgate mechanism" IEEE Trans. Magn .6 (1970) 376.
- 12. G. Musmann, Y. Afanasiev "Fluxgate magnetometers for space research" BoD, 2010.
- 13. E. Tremolet "Magnetostriction" CRC Press, London, 1992.