PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Using a segmented voltage sweep mode and a Gaussien curve fitting method to improve heavy metal measurement system performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
This paper presents a voltammetric segmented voltage sweep mode that can be used to identify and measure heavy metals' concentrations. The proposed sweep mode covers a set of voltage ranges that are centered around the redox potentials of the metals that are under analysis. The heavy metal measurement system can take advantage of the historical database of measurements to identify the metals with higher concentrations in a given geographical area, and perform a segmented sweep around predefined voltage ranges or, alternatively, the system can perform a fast linear voltage sweep to identify the voltammetric current peaks and then perform a segmented voltage sweep around the set of voltages that are associated with the voltammetric current peaks. The paper also includes the presentation of two auto-calibration modes that can be used to improve system's reliability and proposes the usage of a Gaussian curve fitting of voltammetric data to identify heavy metals and to evaluate their concentrations. Several simulation and experimental results, that validate the theoretical expectations, are also presented in the paper.
Rocznik
Strony
381--394
Opis fizyczny
Bibliogr. 34 poz., rys., wykr., wzory
Twórcy
  • Escola Superior de Tecnologia de Setúbal (LabIM), Instituto Politécnico de Setúbal, Rua do Vale de Chaves, Estefanilha, 2910-761 Setúbal, Portugal, dias.pereira@estsetubal.ips.pt
Bibliografia
  • [1] Bard, A.J., Faulkner, L.R. (1980). Electrochemical Methods. New York, Wiley.
  • [2] Sawer, D.T., Sobkowiak, A., Roberts, J.L. (1995). Electrochemistry for Chemists. 2nd ed., New York, Wiley.
  • [3] Rukin, E.M. (2000). Unified Measurements in Determining Traces of Dissolved Metals by Optical Spectroscopy. Journal Measurement Techniques. Publisher Springer New York, 43(3), 281-284.
  • [4] Alexander, D.R., Poulain, D.E., Ahmad, M.U., Kubik, R.D., Cespedes, E.R. (1994). Environmental Monitoring of Soil Contaminated with Heavy Metals using Laser-Induced Breakdown Spectroscopy. In Geoscience and Remote Sensing Symposium, 2, 767-769.
  • [5] Kovaleva, S.V., Gladyshev, V.P., et al. (2005). Methods of Stripping Voltammetry in System of Monitoring Priority Ecotoxicants in Objects of An Environment. In Proceedings of Korean International Symposium on Science and Technology, 1, 186-187.
  • [6] Simion, M., Angelescu, E.E., et al. (2002). Micro and Nanoelectrode Voltammetric Measurements. In Semiconductor Conference, 1, 123-126.
  • [7] Chernyshova, N.N., Svintsova, L.D., Perevezentseva, D.O., Yurasova, S. (2004). Investigation of Electrochemical Activation Phenomenon of Aqueous Medium by Voltammetry Methods, Science and Technology. In Proceedings. The 8th Russian-Korean International Symposium, 2, 16-20.
  • [8] Scozzari, A., Acito, N., Corsini, G. (2005). Signal Analysis of Voltammetric Data Series for Water Quality Tests and Classification. In Instrumentation and Measurement Technology Conference, Pisa, Italy, 89-92.
  • [9] Baudot, A., Bret, J.L. (2003). A Simple Capacitive Cell for the Measurement of Liquids Dielectric Constant Under Transient Thermal Conditions. CryoLetters, 24, 5-16.
  • [10] Mutoh, N., Inoue, T. (2007). A Control Method to Charge Series-Connected Ultraelectric Double-Layer Capacitors Suitable for Photovoltaic Generation Systems Combining MPPT Control Method. IEEE Trans. on Industrial Electronics, 54(1), 374-383.
  • [11] Kaya, A., Fang, H.-Y. (1997). Identification of Contaminated Soils by Dielectric Constant and Electrical Conductivity. Journal of Environmental Engineering, 123(2).
  • [12] Korthum, G. (1965). Treatise on Electrochemistry. University of Tubingen, Germany. 2nd ed. by American Elsevier Publishing, New York.
  • [13] Simion, M., Angelescu, E.E., et al. (2002). Micro and Nanoelectrode Voltammetric Measurements. In Semiconductor Conference, 1, 123-126.
  • [14] Chernyshova, N.N., Svintsova, L.D., Perevezentseva, D.O, Yurasova, S. (2004). Investigation of Electrochemical Activation Phenomenon of Aqueous Medium by Voltammetry Methods, Science and Technology. In Proceedings. The 8th Russian-Korean International Symposium, 2, 16-20.
  • [15] Scozzari, A., Acito, N., Corsini, G. (2005). Signal Analysis of Voltammetric Data Series for Water Quality Tests and Classification. In Instrumentation and Measurement Technology Conference, Pisa, Italy, 1, 89-92.
  • [16] Kovaleva, S.V., Gladyshev, V.P., et al. (2005). Methods of Stripping Voltammetry in System of Monitoring Priority Ecotoxicants in Objects of An Environment. In Proceedings of Korean International Symposium on Science and Technology, Korea, 1, 186-187.
  • [17] Avram, M., Angelescus, A., et al. (2001). Fast Scan Cyclic Voltammetry Simulation for Silicon Nanoelectrodes. In Semiconductor Conference, Sinaia, Romania, 1, 43-46.
  • [18] Luther, W.G., Richard, T.D., Theberge, S., Olroyd, A. (1996). Determination of Metal (bi)Sulfide Stability Constants of Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ by Voltammetric Methods, Environmental Science & Technology, 30.
  • [19] Siemens Semiconductor Group, V23100-S0302-A210 Solid State Relays. (October 2009). http://pdf1.alldatasheet.com/datasheet-pdf/view/133470/SIEMENS/V23100-S0302-A210.html.
  • [20] Keithley. (2002). Low Level Measurements – Precision DC Current, Voltage and Resistance Measurements. 5th ed.
  • [21] Dias Pereira, J.M., Postolache, O., Silva Girão, P. (2010). Improving Celerity of Heavy Metals Measurements. In IEEE International Instrumentation and Measurement Technology Conference - I2MTC/2010, Austin, USA, 1, 1073-1077.
  • [22] Yosypchuk, B., Fojta, M., Barek, J. (2009). Preparation and Properties of Mercury Film Electrodes on Solid Amalgam Surface, Electroanalysis. In Proceedings of the International Conference on Modern Electroanalytical Methods, Prague, Czech Republic.
  • [23] Princeton Applied Research. Micro-Cell Kit K0265 Datasheet: http://www.princetonappliedresearch.com/Our-Products/Accessories/Micro-Cell-Kit.aspx.
  • [24] Franks, W., Schenker, I., Schmutz, P., Hierlemann, A. (2005). Impedance characterization and modeling of electrodes for biomedical applications. In IEEE Transactions on Biomedical Engineeering, 52(7), 1295-1302.
  • [25] Postolache, O., Girão, P., Ramos, H.G., Dias Pereira, M. (2005). Auto Calibration of Stand-Alone Field Operating Sensors for Distributed Water Quality Monitoring Systems. In 14th IMEKO TC4 Symposium on New Technologies in Measurement and Instrumentation, IMEKO TC4, Gdynia, Poland.
  • [26] Dias Pereira, J.M., Silva Girão, P., Postolache, O. (2001). Fitting Transducer Characteristics to Measured Data. IEEE Instrumentation & Measurement Magazine, 4(4), 26-39.
  • [27] O’Halloran, R.J., Smith, D.E. (1978). Fast Fourier transform based interpolation of sampled electrochemical data. Anal. Chem., 50(9), 1391-1394.
  • [28] Kano, K., Mori, K., Uno, B., Goto, M. (1990). Voltammetric and Spectroscopi Properties of the Amonia Adduct of Pyrroloquinoline Quinone. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 293(1), 177-184.
  • [29] Fleming, B.D., Barlow, N.L., Zhang, J, Bond, A.M., Armstrong, F.A. (2006). Application of power spectra patterns in Fourier transform square wave voltammetry to evaluate electrode kinetics of surfaceconfined proteins. Anal Chem. 1, 78(9), 2948-2956.
  • [30] Baranski, A., Szulborska, A. (1994). A fourier transform square-wave voltammetry. Journal of Electroanalytical Chemistry, 373(1-2), 157-165.
  • [31] Zheng, X., Mo, J., Cai, P. (1999). Spline wavelet in the resolution of overlapping voltammetric peaks. Science in China Series B: Chemistry, Publisher Science China Press, co-published with Springer, 42(2), 145-152.
  • [32] Huanga, W., Hendersonb, T.L.E., Bondc, A.M., Oldhamd, K.B. (1995). Curve fitting to resolve overlapping voltammetric peaks: model and examples. Analytica Chimica Acta, 304(1), 1-15.
  • [33] Vale, C., Cortesão. Zinc. (2003). Copper and cadmium in the oyster Crassostrea angulata from the Sado estuary. M. Astruc. and J.N. Lester publication, Division Heavy metals in the Hydrological cycle, Selper ltd., London, 257-264.
  • [34] Vale, C., Sandby, B. (1982). A survey of the elemental composition of the bottom sediments in the Sado estuary. In Proceedings Actual problems of oceanography in Portugal. Ed. JNICT/NATO, 189-200.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0097-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.