PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power system frequency estimation algorithm for electric energy metering of nonlinear loads

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a discrete wavelet transform (DWT) based approach is proposed for power system frequency estimation. Unlike the existing frequency estimators mainly used for power system monitoring and control, the proposed approach is developed for fundamental frequency estimation in the field of energy metering of nonlinear loads. The characteristics of a nonlinear load is that the power signal is heavily distorted, composed of harmonics, inter-harmonics and corrupted by noise. The main idea is to predetermine a series of frequency points, and the mean value of two frequency points nearest to the power system frequency is accepted as the approximate solution. Firstly the input signal is modulated with a series of modulating signals, whose frequencies are those frequency points. Then the modulated signals are decomposed into individual frequency bands using DWT, and differences between the maximum and minimum wavelet coefficients in the lowest frequency band are calculated. Similarities among power system frequency and those frequency points are judged by the differences. Simulation results have proven high immunity to noise, harmonic and inter-harmonic interferences. The proposed method is applicable for real-time power system frequency estimation for electric energy measurement of nonlinear loads.
Rocznik
Strony
307--320
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
autor
  • Huazhong University of Science and Technology, College of Electric and Electronic Engineering, Wuhan, China, pzhill_108hust@yahoo.cn
Bibliografia
  • [1] IEEE Std. 1459-2000. (2000). Definitions for the Measurement of Electric Quantities Under Sinusoidal, Non-sinusoidal, Balanced, or Unbalanced Conditions. The Institute of Electrical and Electronics Engineers, Inc., New York.
  • [2] Svensson, S. (1999). Power measurement techniques for non-sinusoidal conditions. PhD thesis. Chalmers University, Sweden.
  • [3] IEEE Task Force on Harmonics Modeling and Simulation (2007). Inter-harmonics: Theory and Modeling. IEEE Trans. Power Del., 22(4), 2335-2348.
  • [4] Bellido, R.C., Gomez, T. (1997). Identification and modeling of a three phase arc furnace for voltage disturbance simulation. IEEE Trans. Power Del., 12(4), 1812-1817.
  • [5] Ribeiro, P.F. (2009). Time-Varying Waveform Distortions in Power Systems. Wiley-IEEE Press.
  • [6] Ashton, P.T., Swift, G.W. (1990). Measurements of transient electrical noise on low voltage distribution systems. In Proc. IEEE Ind. Appl. Soc. Annu. Meeting, 1740-1742.
  • [7] Miroslav, M.B , Petar, M.D., Dunlap, S., Arun, G.P. (1993). Frequency Tracking in Power Networks in the Presence of Harmonics. IEEE Trans. Power Del., 8(2), 480-486.
  • [8] Giray, M.M., Sachdev, M.S. (1989). Off-nominal frequency measurements in electric power systems. IEEE Trans. Power Del., 4(3), 1573-1578.
  • [9] Girgis, A.A., Peterson, W.L. (1990). Adaptive Estimation of Power Frequency Deviation and Its Rate of Change for Calculating Sudden Power System Overloads. IEEE Trans. Power Del., 5(2), 585-593.
  • [10] Dash, P.K., Jena, R.K., Panda, G., Routray, A. (2000). An Extended Complex Kalman Filter for Frequency Measurement of Distorted Signals. IEEE Trans. Instrum. Meas, 49(4), 746-753.
  • [11] Huang, C.-H., Lee, C.-H., Shih, K.-J., Wang, Y.-J. (2010). A Robust Technique for Frequency Estimation of Distorted Signals in Power Systems. IEEE Trans. Instrum. Meas., 59(8), 2026-2036.
  • [12] Phadke, A.G., Throp, J.S., Adamiak, M. (1983). A new measurement technique for tracking voltage phasors, local system frequency, and rate of change of frequency. IEEE Trans. Power App. Syst., PAS-102(5), 1025-1038.
  • [13] Yang, R., Xue, H. (2008). A novel Algorithm for Accurate Frequency Measurement using Transformed Consecutive Points of DFT. IEEE Trans. Power Syst., 23(3), 1057-1062.
  • [14] Lobos, T., Rezmer, J. (1997). Real-time determination of power system frequency. IEEE Trans. Instrum. Meas., 46(4), 877-881.
  • [15] Zygarlicki, J., Mroczka, J. (2012). Variable-frequency Prony method in the analysis of electrical power quality. Metrol. Meas. Syst., 19(1), 39-49.
  • [16] Szafran, J., Rebizant, W. (1998). Power system frequency estimation. IEE proc.-Gener.Transm. Distrib., 145(5), 578-582.
  • [17] Pradhan, A.K., Routray, A., Basak, A. (2005). Power System Frequency Estimation Using Least Mean Square Technique. IEEE Trans. Power Deliv., 20(3), 1812-1816.
  • [18] Houshang, K., Masoud, K.-G., et al. (2004). Estimation of Frequency and its Rate of Change for Applications in Power Systems. IEEE Trans. Power Deliv., 19(2), 472-480.
  • [19] Mohsen, M., Masoud, K.-G., Alireza, B. (2007). Estimation of Power System Frequency Using an Adaptive Notch Filter. IEEE Trans. Power Deliv., 56(6), 2470-2477.
  • [20] Ali, A., Farhad, M. (2011). Frequency Estimation: A Least-Squares New Approach. IEEE Trans. Power Deliv., 26(2), 790-798.
  • [21] Djuric, P.M., Begovic, M.M., Doroslovacki, M. (1992). Instantaneous Phase Tracking in Power Networks by Demodulation. IEEE Trans. Instrum. Meas, 41(6), 963-967.
  • [22] D’Apuzzo, M., D’Arco, M. (2008). A Time-Domain Approach for the Analysis of Nonstationary Signals in Power Systems. IEEE Trans. Instrum. Meas, 57(9), 1969-1977.
  • [23] Barbosa, D., Monaro, R.M., Coury, D.V., Oleskovicz, M. (2010). Digital frequency relaying based on the modified least mean square method. Int. J. Electr. Power Energ. Syst., 32(11), 236-242.
  • [24] Rawat, T.K., Parthasarathy, H., Oleskovicz, M. (2008). A continuous-time least mean-phase adaptive filter for power system. Int. J. Electr. Power Energ. Syst., DOI:10.1016/j.ijepes.2008.10.012
  • [25] Ardeleanu, A.S., Ramos, P.M. (2011). Real time PC implementation of power quality monitoring system based on multiharmonic least-squares fitting. Metrol. Meas. Syst., 18(4), 543-554.
  • [26] Ramos, P.M., Cruz Serra, A. (2009). Comparison of frequency estimation algorithms for power quality assessment. Measurement, 42, 1312-1317.
  • [27] Bollen, M.H.J., Yu-Hua Gu, I. (2006). Signal Processing of Power Quality Disturbances. IEEE Press, John Wiley & Sons, Inc.
  • [28] Kirby, B.J., Dyer, J., Martinez, C., Shoureshi, R.A., Guttromson, R., Dagle, J. Frequency Control Concerns In The North American Electric Power System. www.ornl.gov/~webworks/cppr/y2001/rpt/116362.pdf.
  • [29] EN50160 (2007).Voltage characteristics of electricity supplied by public distribution systems.
  • [30] Smirnov, S.S. Measurement Results of Frequency and Exchange Power Fluctuations in Russia’s Power System. www.sei.irk.ru/files/publication/24.pdf.
  • [31] Union for the Co-ordination of Transmission of Electricity: Operation Handbook. (2004). Brussels. http://www.ucte.org.
  • [32] Giæver Tande, J.O. (2002). Applying Power Quality Characteristics of Wind Turbines for Assessing Impact on Voltage Quality. SINTEF Energy Research, 5, 37-52.
  • [33] Zhong, Z. (2005). Power Systems Frequency Dynamic Monitoring System Design and Applications. PhD thesis. Virginia Polytechnic Institute and State University.
  • [34] Mallat, S. (1999). A Wavelet Tour of Signal Processing. Academic, New York.
  • [35] C. Sidney Burrus Ramesh A. Gopnath Haitao Guo. (2008). Introduction to wavelets and wavelet transforms: a primer. Pearson Education Asia Limited and China Machine Press, Simplified Chinese edition, Beijing.
  • [36] Zieliński, T. (2004). Wavelet transform applications in instrumentation and measurement: tutorial and literature survey. Metrol. Meas. Syst., 11(1), 61-101.
  • [37] Szmajda, M., Górecki, K., Mroczka, J. (2010). Gabor transform, spwvd, gabor-wigner transform and wavelet transform - tools for power quality monitoring. Metrol. Meas. Syst., 17(3), 383-396.
  • [38] Barros, J., Diego, R.I. (2008). Analysis of harmonics in power systems using the wavelet-packet. IEEE Trans. Instrum. Meas., 57(1), 63-69.
  • [39] Dwivedi, U.D., Singh, S.N. (2010). Enhanced Detection of Power-Quality Events Using Intra and Interscale Dependencies of Wavelet Coefficients. IEEE Trans. Power Deliv., 25(1), 358-366.
  • [40] Moore, P.J., Carranza, R.D., Johns, A.T. (1994). A new numeric technique for high-speed evaluation of power system frequency. IEE proc.-Gener. Transm. Distrib., 141(5), 529-536.
  • [41] Moore, P.J., Allmeling, J.H., Johns, A.T. (1996). Frequency relaying based on instantaneous frequency measurement. IEEE Trans. Power Deliv., 11, 1737-1742.
  • [42] IEC 61000-4-7. (2002). Electromagnetic compatibility (EMC)-Part 4-7: Testing and Measurement Techniques, International Electrotechnical Commission.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0097-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.