PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diagnosis of incipient faults in nonlinear analog circuits

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Considering the problem to diagnose incipient faults in nonlinear analog circuits, a novel approach based on fractional correlation is proposed and the application of the subband Volterra series is used in this paper. Firstly, the subband Volterra series is calculated from the input and output sequences of the circuit under test (CUT). Then the fractional correlation functions between the fault-free case and the incipient faulty cases of the CUT are derived. Using the feature vectors extracted from the fractional correlation functions, the hidden Markov model (HMM) is trained. Finally, the well-trained HMM is used to accomplish the incipient fault diagnosis. The simulations illustrate the proposed method and show its effectiveness in the incipient fault recognition capability.
Rocznik
Strony
203--218
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
  • The School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China, y_den117@126.com
Bibliografia
  • [1] Li, F., Woo, P.Y. (2002). Fault detection for linear analog IC-the method of short-circuits admittance parameters. IEEE Trans. Circuits Syst.I, 49(1), 105-108.
  • [2] Huertas, I.L. (1993). Test and design for testability of analog and mixed-signal integrated circuits: theoretical basis and pragmatical approaches. Proc. ECCTD Conf., 75-156.
  • [3] Kondagunturi, R., Bradley, E., Maggard, K., Stroud, C. (1999). Benchmark circuits for analog and mixedsignal testing. In: Southeastcon’99 Proc. IEEE, 217-220.
  • [4] Tadeusiewicz, M., Hałgas, S. (2011). Multiple soft fault diagnosis of nonlinear dc circuits considering component tolerances. Metrol. Meas. Syst., 18(3), 349-360.
  • [5] Starzyk, J.A., Liu, D., Liu, Z.H., Nelson, D.E., Rutkowski, J.O. (2004). Entropy-based optimum test nodes selection for the analog fault dictionary techniques. IEEE Trans. Instrum.Meas.,53(3), 754-761.
  • [6] Bandler, J.W., Salama, A.E. (1985). Fault diagnosis of analog circuits. In: Proc. IEEE, 73(8), 1279-1325.
  • [7] Grzechca, D. (2011). Soft fault clustering in analog electronic circuits with the use of self organizing neural network. Metrol. Meas. Syst., 18(4), 555-568.
  • [8] Mohsen, A.A.K., El-Yazeed, M.F.A. (2004). Selection of input stimulus for fault diagnosis of analog circuits using ARMA model. Int. J. Electron. Commun., 58(3), 212-217.
  • [9] Aminian, F., Aminian, M., Collins, H.W. (2002). Analog fault diagnosis of actual circuits using neural networks. IEEE Trans. Instrum. Meas., 51(3), 544-550.
  • [10] Aminian, M., Aminian, F. (2000). Neural-network based analog circuit fault diagnosis using wavelet transform as preprocessor. IEEE Trans. Circuits Syst. II, 47(2), 151-156.
  • [11] Zhou, L.F., Shi, Y.B., Tang, J.Y., Li, Y.J. (2009). Soft fault diagnosis in analog circuit based on fuzzy and direction vector. Metrol. Meas. Syst., 16(1), 61-75.
  • [12] Wang, P., Yang, S.Y. (2005). A new diagnosis approach for handling tolerance in analog and mixedsignal circuits by using fuzzy math. IEEE Trans .Circuits Syst. I, 52(10), 2118-2127.
  • [13] Zhang, W., Zhou, L., Shi, Y., et al. (2010). Soft-fault diagnosis of analog circuit with tolerance using FNLP. Metrol. Meas. Syst., 17(3), 349-362.
  • [14] Roh, J., Abraham, J.A. (2004). Subband filtering for time and frequency analysis of mixed-signal circuit testing. IEEE Trans. Instrum. Meas., 53(2), 602-611.
  • [15] Yang, C.L., Tian, S.L., Long, B., Chen, F. (2011). Methods of handling the tolerance and test-point selection problem for analog-circuit fault diagnosis. IEEE Trans. Instrum. Meas., 60(1), 176-185.
  • [16] Grzechca, D., Rutkowski, J., Golonek, T. (2010). PCA application to frequency reduction for fault diagnosis in analog and mixed electronic circuits. Proc. of 2010 IEEE Int. Sym. On Circuits and Systems (ISCAS), Paris, France, 1919-1922.
  • [17] Cui, J., Wang, Y. (2011). Analog circuit fault classification using improved one-against-one support vector machines. Metrol. Meas. Syst., 18(4), 569-582.
  • [18] Cui, J., Wang, Y. (2010). A novel approach of analog fault classification using a support vector machines classifier. Metrol. Meas. Syst., 17(4), 561-582.
  • [19] Grzechca, D., Rutkowski, J. (2009). Fault diagnosis in analog electronic circuits - the SVM approach. Metrol. Meas. Syst., 16(4), 583-598.
  • [20] Yang, S.K. (2003). A condition-based failure-prediction and processing-scheme for preventive maintenance. IEEE Trans. Reliab. 52(3), 373-384.
  • [21] Xu, L.J., Huang, J.G., Wang, H.J., Long, B. (2010). A novel method for the diagnosis of the incipient faults in analog circuits based on LDA and HMM. Circuits Syst Signal Process, 29, 577-600.
  • [22] Jiang, B., Shi, P., Mao, Z.H. (2011). Sliding mode observer-based fault estimation for nonlinear networked control systems. Circuits Syst Signal Process, 30, 1-16.
  • [23] Glentis, G.O., Koukoulas, P., Kalouptsidis, N. (1999). Efficient algorithms for Volterra system identification. IEEE Trans. Signal Process, 47(11), 3042-3057.
  • [24] Rugh, W.J. (1981). Nonlinear system theory - the Volterra/Wiener approach. The Johns Hopkins Univ. Press.
  • [25] Evans, C., Rees, D., Jones, L., Weiss, M. (1996). Periodic signals for measuring nonlinear Volterra kernels. IEEE Trans. Instrum. Meas. 45(2), 362-371.
  • [26] Akay, O., Boudreaux-Bartels, G.F. (2001). Fractional convolution and correlation via operator methods and an application to detection of linear FM signals. IEEE Trans. Signal Process. 49(5), 979-993.
  • [27] Ozaktas, H.M., Zalevsky, Z., Kutay, M.A. (2001). The fractional Fourier transform with applications in optics and signal processing. J. Wiley.
  • [28] Almeida, L.B. (1994). The fractional Fourier transform and time-frequency representations. IEEE Trans. signal process., 42(11), 3084-3091.
  • [29] Rabiner, L.R., Juang, B.H. (1986). An introduction to hidden Markov models. IEEE ASSP Mag. 3(1), 4-15.
  • [30] Yang, J., Xu, Y.S., Chen, C.S. (1997). Human action learning via hidden Markov model. IEEE Trans. Syst. Man. Cybern. Part A, Syst. Humans, 27(1), 34-44.
  • [31] Juang, B.H., Rabiner, L.R. (1991). Hidden Markov models for speech recognition. Technometrics, 33(3), 251-272.
  • [32] Catelani, M., Fort, A. (2002). Soft fault detection and isolation in analog circuits: Some results and a comparison between a fuzzy method and radial basis function networks. IEEE Trans. Instrum. Meas. 51(2), 196-202.
  • [33] Trevor, G.B., Rafik, A.G., Franck, B. (2009). Nonlinear system identification using a subband adaptive Volterra filter. IEEE Trans. Instrum. Meas., 58(5),1389-1397.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0097-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.