Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Methods of time interval measurement can be divided into asynchronous and synchronous approaches. It is well known that in asynchronous methods of time-interval measurement, uncertainty can be reduced by using statistical averaging. The motivation of this paper is an investigation of averaging in time interval measurements, especially in a synchronous measurement. In this article, authors are considering the method of averaging to reduce the influence of quantization error on measurement uncertainty in synchronous time-interval measurement systems, when dispersion of results, caused by noise is present. A mathematical model of averaging, which is followed by the results of numerical simulations of averaging of measurement series is presented. The analysis of results leads to the conclusion that in particular conditions the influence of the quantization error on measurement uncertainty can be minimized by statistical averaging, similar to asynchronous measurements.
Czasopismo
Rocznik
Tom
Strony
115--122
Opis fizyczny
Bibliogr. 12 poz., rys., wykr., wzory
Twórcy
autor
autor
autor
autor
- University of Nicolaus Copernicus, Faculty of Physics, Astronomy and Informatics, Grudziądzka 1/5, 87-100 Toruń, Poland, zawor@fizyka.umk.pl
Bibliografia
- [1] Waanenaker, R.A., Lipshitz, S.P., Vanderkooy, J., Wright, J.N. (2000). A theory of nonsubtractive dither. IEEE Transactions on Signal Processing, 48 (2), 499-516.
- [2] Krause, L. (2006). Effective quantization by averaging and dithering. Measurement, 39, 681-694.
- [3] Widrow, B., Kollar, I. (2008). Quantization noise: roundoff error in digital computation, signal processing, control, and communications. Cambridge University Press.
- [4] Alegria, F.C. (2009). Study of the random noise test of analog-to-digital converters. Metrology and measurement systems, 16(4), 545-556.
- [5] Lal-Jadziak, J., Sienkowski, S. (2009). Variance of random signal mean square value digital estimator. Metrology and measurement systems, 16(2), 267-278.
- [6] Kalisz, J. (2004). Review of methods for time interval measurements with picosecond resolution. Metrologia, 41, 17-32.
- [7] Henzler, S. (2010). Time-to-Digital Converters. Springer Series in Advanced Microelectronics Series, #29. Springer-Verlag New York, LLC.
- [8] Fundamentals of Time Interval Measurement (1997). Hewlett-Packard App. Note 200-3.
- [9] Baronti, F., Fanucci, L., Lunardini, D., Roncella, R., Saletti, R. (2001). On the differential nonlinearity of time-to-digital converters based on delay-locked-loop delay lines. Nuclear Science, IEEE Transactions on, 48(6), 2424-2431.
- [10] Szymanowski, R. (2006). Quantization error influence on measurement uncertainty of interpolation time counter. Measurement, Automation, Control, 9 bis, 74-76. (in Polish)
- [11] Zieliński, M., Kowalski, M., Chaberski, D., Grzelak, S., Frankowski, R. (2008). Measurement system of oscillators; phase fluctuation and its applications. Electrical Review, 5(84), 259-264. (in Polish)
- [12] Chaberski, D., Zielinski, M., Grzelak, S. (2009). The new method of calculation sum and difference histogram for quantized data. Measurement, 42, 1388-1394.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0090-0010