PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical model of dynamic work conditions in the measuring chamber of an air gauge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of the proposed computational model was to evaluate the dynamical properties of air gauges in order to exploit them in such industrial applications as in-process control, form deviation measurement, dynamical measurement. The model is based on Reynolds equations complemented by the k-ε turbulence model. The boundary conditions were set in different areas (axis of the chamber, side surfaces, inlet pipeline and outlet cross-section) as Dirichlet's and Neumann's ones. The TDMA method was applied and the efficiency of the calculations was increased due to the "line-by-line" procedure. The proposed model proved to be accurate and useful for non-stationary two-dimensional flow through the air gauge measuring chamber.
Słowa kluczowe
Rocznik
Strony
29--38
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wzory
Twórcy
autor
autor
autor
  • Poznan University of Technology, Institute of Mechanical Technology, pl. M. Sklodowskiej-Curie 5, 60-965 Poznan, Poland, cz.jermak@interia.pl
Bibliografia
  • [1] Hennessy, R. (2005). Use air to improve measurements; manufacturers turn to air gaging for highresolution measurements. Quality Magazine, 30-33.
  • [2] Zelczak, A. (2002). Pneumatic dimensional measurements. Communication Publishing and Communications, Warsaw. (in Polish)
  • [3] Rucki, M., Barisic, B., Varga, G. (2010). Air gauges as a part of the dimensional inspection systems. Measurement, 43(1), 83-91.
  • [4] Jermak, Cz.J., Rucki, M. (2009). Evaluation of the response time of air gauges in industrial applications. Metrology and Measurement Systems, 16(4), 689-700.
  • [5] Yandayan, T., Burdekin, M. (1997). In-process dimensional measurement and control of workpiece accuracy. International Journal of Machine Tools and Manufacture, 37(10), 1423-1439.
  • [6] Menzies, I., Koshy, P. (2009). In-process detection of surface porosity in machined castings. International Journal of Machine Tools & Manufacture, 49, 530-535.
  • [7] Wang, Y.H., et al. (2005). An Automatic Sorting System Based on Pneumatic Measurement. Key Engineering Materials, 295-296, 563-568.
  • [8] Koshy, P., Grandy, D., Klocke, F. (2011). Pneumatic non-contact topography characterization of finishground surfaces using multivariate projection methods. Precision Engineering, 35, 282-288.
  • [9] Jermak, Cz.J., Cellary, A., Rucki M. (2010). Novel method of non-contact out-of-roundness measurement with air gauges. Proceedings of the Euspen 10th International Conference, Delft, Holland, 71-74.
  • [10] Rucki, M., Barisic, B. (2009). Response Time Of Air Gauges with Different Volumes of the Measuring Chambers. Metrology and Measurement Systems, 16(2), 289-298.
  • [11] Rucki, M. (2007). Step Response of the Air Gauge. Metrology and Measurement Systems, 14(3), 429-436.
  • [12] Rucki, M., Barisic, B., Ocenasova, L. (2010). Dynamic calibration of air gauges. Archives of Mechanical Technology and Automation, 30(2), 129-134.
  • [13] Finkelstein, L. (2007). Reflections on a century of measurement science as an academic discipline. Metrology and Measurement Systems, 14(4), 635-638.
  • [14] Janiczek, T., Janiczek, J. (2010). Linear dynamic system identification in the frequency domain using fractional derivatives. Metrology and Measurement Systems, 17(2), 279-288.
  • [15] Woelke, M. (2007). Eddy Viscosity Turbulence Models employed by Computational Fluid Dynamic. Transactions of the Institute of Aviation, Scientific Quarterly, (4), 191.
  • [16] Dobrowolski, B., Kabza, Z., Spyra, A. (1988). Digital Simulation of Air Flow Through a Nozzle of Pneumatic Gauge. Proceedings of 33rd JUREMA Annual Gathering, Zagreb, 67-70.
  • [17] Theory and Practice of Air Gauging (2011), Monography, ed. Cz.J. Jermak, TU Poznan.
  • [18] Lauder, B.E., Spalding, D.B. (1974). The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering, (3), 269-289.
  • [19] Patankar, S. (1980). Numerical heat transfer and fluid flow. New York, Hemisphere.
  • [20] Dobrowolski, B., Kabza, Z. (1992). Theoretical analysis of the axial symmetric deformation of the velocity field and stream turbulences influences on the metrological properties of the measuring nozzles. Studies and Monographies, (59), College of Engineering in Opole. (in Polish)
  • [21] Dobrowolski, B., Kręcisz, K., Spyra, A. (2005). Usability of selected turbulence models for simulation flow through a pipe orifice. Task Quarterly, 9(4), 439-448.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0090-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.