PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensors and systems for the detection of explosive devices - an overview

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents analyses of current research projects connected with explosive material sensors. Sensors are described assigned to X and γ radiation, optical radiation sensors, as well as detectors applied in gas chromatography, electrochemical and chemical sensors. Furthermore, neutron techniques and magnetic resonance devices were analyzed. Special attention was drawn to optoelectronic sensors of explosive devices.
Rocznik
Strony
3--28
Opis fizyczny
Bibliogr. 106 poz., rys., wykr.
Twórcy
autor
autor
autor
autor
autor
autor
autor
Bibliografia
  • [1] Woodfin, R.L. (2007). Trace chemical sensing of explosives. John Wiley & Sons, Inc., Hoboken, New Jersey.
  • [2] Hussein, E.M.A., Walker, E.J. (1998). Review of one-side approaches to radiographic imaging for the detection of explosives and narcotics. Radiation Measurements, 29(6), 581-591.
  • [3] Kanu, A.B., Dwivedi, P., Tam, M., Herbert, L.M., Hill, H. (2008). Ion mobility-mass spectrometry. Mass Spectrom., 43, 1-22. Wiley Inter Science (www.interscience.wiley.com) DOI:10.1002/jms.1383.
  • [4] Reno, J., Fisher, R.C., Robinson, L., Brennan, N., Travis, J. (1999). Guide for the selection of commercial explosives detection systems for low enforcement application. U.S. National Institute of Justice. Washington.
  • [5] Singh, S., Singh, M. (2003). Review of Explosives detection systems for aviation security. Signal Processing, 83, 31-55.
  • [6] Harding, G. (2004). Radiation, X-ray scatter tomography for explosives detection. Physics and Chemistry, 71, 869-881.
  • [7] Vogel, H. (2007). Search by X-rays applied technology. European Journal of Radiology, 63, 227-236.
  • [8] Liu, Y., Sowerby, B.D., Tickner, J.R. (2008). Comparison of neutron and high-energy X-ray dual-beam radio- graphy for air cargo inspection. Applied Radiation and Isotopes, 66, 463-473.
  • [9] Dicken, A., Rogers, K., Evans, P., Rogers, J., Chan, J.W. (2010). The separation of X-ray diffraction patterns for threat detection. Applied Radiation and Isotopes, 68, 439-443.
  • [10] Eger, L., Do, S., Ishwar, P., Karl, W.C., Pien, H. (2011). A learning-based approach to explosives detection using multi-energy x-Ray computed tomography. Acoustics, Speech and Signal Processing (ICASSP), IEEE International Conference in Prague, 2004-2007.
  • [11] Faust, A.A., Rothschild, R.E., Leblanc, P., McFee, J.E. (2009). Development of a Coded Aperture X-Ray Backscatter Imager for Explosive Device Detection. IEEE Transactions on Nuclear Science, 56(1).
  • [12] Buffler, A. (2004). Contraband detection with fast neutrons. Radiation Physics and Chemistry, 71, 853-861.
  • [13] Reber, E.L., Larry, C., Blackwood, G. (2007). Explosives Detection System: Development and Enhancements. Sens Imaging, 8, 121-130.
  • [14] Runkle, R.C., White, T.A. (2009). Photon and neutron interrogation techniques for chemical explosives detection in air cargo. Nuclear Instruments and Methods in Physics Research A, 603, 510-528.
  • [15] Brooks, F.D., Drosg, M., Smit, F.D., Wikner, C. (2011). Detection of explosive remnants of war by neutron thermalisation. Applied Radiation and Isotopes, 70(1), 119-127.
  • [16] Sharma, S.K., Jakhar, S., Shukla, R., Shyama, A., Raob, C.V.S. (2010). Explosive detection system using pulsed 14MeV neutron source. Fusion Engineering and Design, 85, 1562-1564.
  • [17] Papp, A., Csikai, J. (2011). Detection and identification of explosives and illicit drugs using neutron based techniques. J. Radioanal. Nucl. Chem., 288, 363-371.
  • [18] Smith, J.A.S., Rayner, T.J., Rowe, M.D., Barras, J., Peirson, N.F., Stevens, A.D., Althoefer, K. (2010). Magnetic field-cycling NMR and 14N, 17O quadrupole resonance in the explosive pentaerythritoltetranitrate (PETN). Journal of Magnetic Resonance, 204, 139-144.
  • [19] Fischer, N., Klapötke, T.M., Stierstorfer, J., Wiedemann, C. (2011). 1-Nitratoethyl-5- nitriminotetrazole derivatives - Shaping future high explosives. Polyhedron, 30, 2374-2386.
  • [20] Regulla, D. (2000). From dating to biophysics D20 years of progress in applied ESR spectroscopy. Applied Radiation and Isotopes, 52, 1023-1030.
  • [21] Gudmundson, E., Jakobsson, A., Stoica, P. (2009). Based Explosives Detection-An Overview. IEEE - Transection on Signal Processing, 56(3) 887-894.
  • [22] Zhang, X., Balkır, S., Hoffman, M.W., Schemm, N., Robust, A. (2010). CMOS Receiver Front-end for Nuclear Quadrupole Resonance Based Explosives Detection. IEEE - Circuits and Systems, 53(8), 1093-1096.
  • [23] Wang, X., Liu, P., Fox, K.A., Tang, J., Colón Santana, J.A., Belashchenko, K., Dowben, P.A., Sui, Y. (2010). The effects of Gd doping and oxygen vacancies on the properties of EuO films prepared via pulsed laser deposition. IEEE Trans. Magn., 46, 1879-1882.
  • [24] Smith, J.A.S., Blanz, M., Rayner, T.J., Rowe, M.D., Bedford, S., Althoefer, K. (2011). 14N Quadrupole Resonance and 1H T1 Dispersion in the Explosive RDX. Journal of Magnetic Resonance, 213(1), 191-196.
  • [25] Gregorovic, A., Apih, T. (2009). TNT detection with 14N NQR: Multipulse sequences and matched filter. Journal of Magnetic Resonance, 198, 215-221.
  • [26] Osa, T.M., Cerionia, L.M., Forguez, J., Olle, J.M., Pusiola, D.J. (2007). NQR: From imaging to explosives and drugs detection. Physica B, 389, 45-50.
  • [27] Ostafin, M., Nogaj, B. (2007). 14N-NQR based device for detection of explosives in landmines. Measurement, 40, 43-54.
  • [28] Kuznitsov, A.V., Osetrov, O.I. (2006). Detection of improvised explosives and explosive devices in Detection and disposal improvised explosives. Springer.
  • [29] Stitzel, S.E., Cowen, L.J., Albert, K.J., Walt, D.R. (2001). Array-to-Array Transfer of an Artificial Nose Classifier. Anal. Chem., 73(21), 5266-5271.
  • [30] Koscho, M.E., Grubbs, R.H., Lewis, N.S. (2002). Properties of Vapor Detector Arrays Formed through Plasticization of Carbon Black-Organic Polymer Composites. Anal. Chem., 74, 1307-1315.
  • [31] Wohltejen, H., Snow, A.W. (1998). Colloidal metal-insulator-metal ensemble chemiresistor sensor. Anal. Chem., 70, 2856-2859.
  • [32] Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W. (2003). Handbook of machine olfaction. Wiley-VCH, Weinheim.
  • [33] Jakubik, W., Urbanczyk, M., Maciak, E., Pustelny, T. (2008). Bilayer structures of NiOx and Pd in surface acoustic wave an electrical gas sensor systems. Bulletin of Polish Academy of Sciences: Technical Sciences, 56(2), 133-138.
  • [34] Murugarajan, A., Samuel, G.L. (2011). Measurement, modeling and evaluation of surface parameter using capacitive-sensor-based measurement system, Metrology and Measurement Systems, 18(3), 403-418.
  • [35] http://science.nasa.gov/science-news/science-at-nasa/2004/06oct_enose (2011).
  • [36] http://www.prenhall.com/settle/chapters/ch31.pdf (2011).
  • [37] Collin, O.L., Niegel, C., DeRhodes, K.E., McCord, B., Jackson, G.P. (2006). Fast Gas Chromatography of Explosive Compounds Using a Pulsed-Discharge Electron Capture Detector. Journal of Forensic Sciences, 51, 815-818.
  • [38] http://www.interactpartnership.co.uk/members/technologies/23.pdf (2011).
  • [39] www.iut-berlin.info/fileadmin/user_upload/Literatur/Poster_Symposium_ISADE_FINEX.pdf (2011).
  • [40] http://sniffexquestions.blogspot.com/2007/09/what-about-ade-100-ade-101-ade650-ade.html (2011).
  • [41] http://www.scribd.com/doc/56952947/38/The-Electron-Capture-Detector (2011).
  • [42] Gut, K., Zakrzewski, A., Pustelny, T. (2010). Sensitivity of polarimetric waveguide interferometer for different waveguides. Acta Physica Polonica A, 118(6), 1140-1142.
  • [43] Toaland, S.J., Trogler, W. (2006). Polymer sensors for nitroaromatic explosives detection. J. Mater. Chem., 16, 2871-2883.
  • [44] Staples, E.J. (2004). Detecting Chemical Vapours from Explosives Using the zNose®, an Ultra-High Speed Gas Chromatograph, Electronic Noses & Sensors for the Detection of Explosives. NATO Science Series, 159, 235-248.
  • [45] Casalinuovo, I.A., Di Pierro, D., Coletta, M., Di Francesco, P. (2006). Application of Electronic Noses for Disease Diagnosis and Food Spoilage Detection. Sensors, 6, 1428-1439.
  • [46] Wilson, A.D., Baietto, M. (2009). Applications and Advances in Electronic-Nose Technologies. Sensors, 9, 5099-5148.
  • [47] Eiceman, G., Karpas, Z. (2005). Ion Mobility Spectrometry. CRC Press.
  • [48] Singh, S. (2007). Sensors - an effective approach for the detection of explosives. Journal of Hazardous Materials, 144, 15-28.
  • [49] Naal, Z., Park, J.H., Bernhard, S., Shapleigh, J.P., Batt, C.A., Abrun, H.D. (2002). Amperometric TNT biosensor based on the oriented immobilization of a nitroreductase maltose binding protein fusion. Analytical Chemistry, 74, 140.
  • [50] Wilson, R., Clavering, C., Hutchinson, A. (2003). Paramagnetic bead based enzyme electrochemiluminescence immunoassay for TNT. Journal of Electroanalytical Chemistry, 557, 109-119.
  • [51] Hatab, N.A., Eres, G., Hatzingerc, P.B., Gua, B. (2010). Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy. J. Raman Spectroscopy, 41, 1131-1136.
  • [52] Smulko, J., Gnyba, M., Kwiatkowski, A. (2011). Detection of illicit chemicals by portable Raman spectrometer. Bulletin Polish Academy of Science. Technical Science (to be published).
  • [53] http://www.sciencedaily.com/releases/2011/05/110509161759.htm (2011).
  • [54] Kosterev, A.A., Tittel, F.K., Serebryakov, D.V., Malinovsky, A.L., Morozov, I.V. (2005). Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum., 76, 043105.
  • [55] Pedersen, M., McClelland, J. (2005). Optimized capacitive MEMS microphone for photoacoustic spectroscopy (PAS) applications. Proc. SPIE, 108, 5732.
  • [56] Laurila, T., Cattaneo, H., Koskinen, V., Kauppinen, J., Hernberg, R. (2005). Diode laser-based photoacoustic spectroscopy with interferometrically- enhanced cantilever detection. Opt. Express, 13, 2453-2458.
  • [57] http://www.sciencedaily.com/releases/2008/06/080625153328.htm (2011).
  • [58] Filenko, D., Ivanov, T., Volland, B.E., Ivanova, K., Rangelow, I.W., Nikolov, N., Gotszalk, T., Mielczarski, J. (2008). Experimental setup for characterization of self-actuated microcantilevers with piezoresistive readout for chemical recognition of volatile substances. Rev. Sci. Instr., 79, 094101-6.
  • [59] http://www.arete.com/index.php?view=stil_mcm (2011).
  • [60] Schubert, H., Kuznetsov, A. (2005). Detection and disposal of improvised explosives. Springer.
  • [61] Onat, B.M., Carver, G. Itzler, M. (2009). A solid-state hyperspectral imager for real time standoff explosives detection using shortwave infrared imaging. Proc. SPIE, 7310, 731004-1.
  • [62] Cremers, D.A., Radziemski, L.J. (2006). Handbook of Laser-Induced Breakdown Spectroscopy. John Wiley & Sons.
  • [63] Michel, A.P.M. (2010). Review: Applications of single-shot laser-induced breakdown spectroscopy. Spectrochim. Acta B, 65, 185-191.
  • [64] Fortes, F.J., Laserna, J.J. (2010). The development of field able laser-induced breakdown spectrometer: No limits on the horizon. Spectrochim. Acta B, 65, 975-990.
  • [65] Gottfried, J.L., De Lucia, Jr F.C., Munson, C.A., Miziolek, A.W. (2009). Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects. Anal. Bioanal. Chem., 395, 283-300.
  • [66] Weckenmann, A., Bernstein, J. (2010). Optical multi-sensor metrology for extruded profiles. Metrology and Measurement Systems, 17(1), 47-54.
  • [67] Lazic, V., Palucci, A., Jovicevic, S., Poggi, C., Buono, E. (2009). Analysis of explosive and other residues by laser induced breakdown spectroscopy. Spectrochim. Acta B, 64, 1028-1039.
  • [68] Lucena, P., Dona, A., Tobaria, L.M., Laserna, J.J. (2011). New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy. Spectrochim. Acta B, 66, 12-20.
  • [69] Lazic, V., Palucci, A., Jovicevic, S., Carpanese, M. (2011). Detection of explosives in traces by laser induced breakdown spectroscopy: Differences from organic interferents and conditions for a correct classification. Spectrochim. Acta B, 66, 644-655.
  • [70] De Lucia, Jr F.C., Gottfried, J.L. (2010). Characterization of a series of nitrogen-rich molecules using laser- induced breakdown spectroscopy. Propellants Explos. Pyrotech., 35, 268-277.
  • [71] Sovova, K., Dryahina, K., Spanel, P., Kyncl, M., Civis, S. (2010). A study of the composition of the products of laser-induced breakdown of hexogen, octogen, pentrite and trinitrotoluene using selected ion flow tube mass spectrometry and UV-VIS spectrometry. Analyst, 135, 1106-1114.
  • [72] Tran, M., Sun, Q., Smith, B.W., Winefordner, J.D. (2001). Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy. J. Anal. At. Spectrom., 16, 628-632.
  • [73] Gottfried, J.L., De Lucia, Jr F.C., Miziolek, A.W. (2009). Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy. J. Anal. At. Spectrom., 24, 288-296.
  • [74] Babushok, V.I., De Lucia, Jr. F.C., Gottfried, J.L., Munson, C.A., Miziolek, A.W. (2006). Double pulse laser ablation and plasma, laser induced breakdown spectroscopy signal enhancement. Spectrochim. Acta B, 61, 999-1014.
  • [75] Lasheras, R.J., Bello-Galvez, C., Rodriguez-Celis, E.M., Anzano, J. (2011). Discrimination of organic solid materials by LIBS using methods of correlation and normalized coordinates. J. Hazard. Mat., 192, 704-713.
  • [76] Kwiatkowski, A., Gnyba, M., Smulko, J., Wierzba, P. (2010). Algorithms of chemicals detection using raman spectra. Metrology and Measurement Systems, 17(4), 549-560.
  • [77] De Lucia, Jr F.C., Gottfried, J.L., Munson, C.A., Miziolek, A.W. (2008). Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues. Appl. Opt., 47, G112-G120.
  • [78] Clegg, S.M., Sklute, E., DarbyDyare, M., Barefield, J.E., Wiens, R.C. (2009). Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques. Spectrochim. Acta B, 64, 79-88.
  • [79] Koujelev, A., Sabsabi, M., Motto-Ros, V., Laville, S., Lui, S.L. (2010). Laser-induced breakdown spectroscopy with artificial neural network processing for material identification. Planet. Space Sci., 58, 682-690.
  • [80] Koren, Y., Carmel, L. (2004). Robust Linear Dimesionality Reduction. IEEE Trans. Visualisation and computer Graphics, 10, 459-470.
  • [81] Hoehse, M., Mory, D., Florek, S., Weritz, F., Gornushkin, I., Panne, U. (2009). A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis. Spectrochim. Acta B, 64, 1219-1227.
  • [82] Susek, W. (2010). Thermal Microwave Radiation for Subsurface Absolute Temperature Measurement. Acta Physica Polonica A, 118, 6, 1246-1249.
  • [83] Seguin, S. (2009). Detection of low cost radio frequency receivers based on their unintended electromagnetic emissions and an active stimulation. Ph.D. dissertation, Missouri S&T.
  • [84] Guelle, D., Smith, A., Lewis, A., Bloodworth, T. (2003). Metal detector handbook for humanitarian demining. European Communities.
  • [85] Daniels, D.J. (2009). Ground Penetrating Radar for Buried Landmine and IED Detection, Unexploded Ordnance Detection and Mitigation. NATO Science for Peace and Security Series B: Physics and Biophysics.
  • [86] Kaczmarek, P., Karczewski, J., Łapiński, M., Miluski, W., Pasternak, M., Silko, D. (2011). Stepped frequency continuous wave radar unit for unexploded ordnance and improvised explosive device detection. International Radar Symposium Proceedings, 105-109.
  • [87] Yun-Shik, L. (2008). Principles of Terahertz Science and Technology. Springer.
  • [88] Kemp, M.C. (2011). Explosives Detection by Terahertz Spectroscopy-A Bridge Too Far? IEEE Transactions on Terahertz Science and Technology, 1, 282-292.
  • [89] Dragoman, D., Dragoman, M. (2004). Terahertz fields and applications. Prog. Quantum Electron., 28, 1-66.
  • [90] Palka, N. (2011). THz reflection spectroscopy of explosives measured by Time Domain Spectroscopy. Acta Physica Polonica A, 120(4), 713-715.
  • [91] Chalmers, J.M. (1999). Mid-infrared spectroscopy. Spectroscopy in process analysis. CRC Press LLC. 117, ISBN 1841270407.
  • [92] http://www.ipm.fraunhofer.de
  • [93] http://www.teledyne-ai.com/pdf/lga-3500.pdf
  • [94] Busch, K.W., Busch, M.A. (1999). Cavity-Ringdown Spectroscopy, An Ultratrace-Absorption Measurement Technique. ACS Symposium series, Washington DC.
  • [95] Berden, G., Peeters, R., Meijer, G. (2000). Cavity ring-down spectroscopy. Experimental schemes and applications. Int. Rev. Phys. Chem., 19(4), 565-607.
  • [96] Kasyutich, V.L., Bale, C.S.E., Canosa-Mas, C.E., Pfrang, C., Vaughan, S., Wayne, R.P. (2003). Cavityenhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode. Appl. Phys. B, 76(6), 691-698.
  • [97] Wojtas, J. (2011). Detection of optical radiation in NOx optoelectronic sensors employing cavity enhanced absorption spectroscopy. Chapter in Optoelectronics - Devices and Applications, Intech Publishers, Vienna, Austria, ISBN 978-953-307-576-1, 147-172.
  • [98] Wojtas, J., Czyzewski, A., Stacewicz, T., Bielecki, Z. (2006). Sensitive detection of NO2 with Cavity Enhanced Spectroscopy. Optica Applicata, 36(4), 461-467.
  • [99] Wojtas, J., Bielecki, Z. (2008). Signal processing system in the cavity enhanced spectroscopy. Opto-Electron. Rev., 16(4), 44-51.
  • [100] Bielecki, Z., Stacewicz, T., Wojtas, J., Nowakowski, M., Mikołajczyk, J. (2011). Polish patent application No P.394439.
  • [101] Wojtas, J., Mikolajczyk, J., Nowakowski, M., Rutecka, B., Medrzycki, R., Bielecki, Z. (2011). Appling CEAS method to UV, VIS, and IR spectroscopy sensors. Bulletin of the Polish Academy of Sciences, Technical Sciences, 59(4) (in press).
  • [102] Wojtas, J. (2011). Polish patent application No P.395707.
  • [103] Stacewicz, T., Wojtas, J., Bielecki, Z., Nowakowski, M., Mikołajczyk, J., Mędrzycki, R., Rutecka, B. (2012). Cavity Ring Down Spectroscopy: detection of trace amounts of matter. Opto-Electron. Rev. 20(1), 34-41 (in press).
  • [104] Oxley, J.C. (1995). Explosive detection: potential problems. Proc. SPIE, 2511, 217-225.
  • [105] Pustelny, T., Maciak, E., Opilski, Z., Bednorz, M. (2007). Optical interferometric structures for application in gas sensors, Optica Applicata, 37(102), 187-194.
  • [106] Struk, P., Pustelny, T., Golaszewska, K., Kaminska, E., Borysewicz, M., Ekielski, M., Piotrowska, A. (2011). Photonic structures with grating couplers based on ZnO. Opto-Electronics Review, 19(4), 462-467.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0090-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.