
239

nauka

12/2011 Pomiary automatyka Robotyka

NAUKA

Modelling concurrent systems with Alvis

Marcin Szpyrka
AGH University of Science and Technology, Department of Automatics

Abstract: Alvis is a new modeling language for developing concur-
rent (embedded) systems. The language is being developed within
the confines of the Alvis project at AGH University of Science and
Technology, Department of Automatics. The Alvis language com-
bines hierarchical graphical modelling with a high level programming
language. Moreover, a formal verification of a model, based on an
LTS graph (Labelled Transition System) is possible. The paper de-
scribes selected features of the language and the future plans of
the project.

Keywords: Alvis, embedded systems, concurrent systems,
modelling and verification

B eginning of the Alvis project dates back to April 2009.
The aim of the project is to work out a language

suitable for efficient modelling and formal verification of
concurrent systems. Especially, we focus on embedded
systems. Alvis [1] is a modelling language for real-time
concurrent systems. The key concept of Alvis is agent. The
name has been taken from the CCS process algebra [2]
and denotes any distinguished part of the system under
consideration with defined identity persisting in time. The
Alvis high level programming language is used to describe
behaviour of individual agents, and the Alvis graphical
language is used to define data and control flow among
agents.

Similar to other formal methods, Alvis provides a possi-
bility of formal verification of models. An Alvis model can
be transformed into a labelled transition system (LTS). Af-
ter encoding such a graph using the Binary Coded Graphs
(BCG) format, its properties are verified with the CADP
toolbox [3]. The paper presents a survey of main features
of the language and describes the state-of-art of the Alvis
project.

1. Alvis Code Language
The Alvis Code Language is used to implement the so-called
code layer of a model. It uses both Haskell functional pro-
gramming language [4] and original Alvis statements. The
layer is used to define data types used in the model under
consideration, functions for data manipulation and the be-
haviour of individual agents. Selected Alvis statements are
given in Table 1.

2. Communication diagrams
Graphical items used in a communication diagram design
are shown in Fig. 1. Agents in Alvis are divided into three
groups: active, passive and hierarchical ones. Active agents

Tab. 1. Selected Alvis statements
Tab. 1. Wybrane konstrukcje języka Alvis

Statement Description
cli Turns off interrupts handlers.
critical {...} Defines a critical section.
delay ms Delays an agent execution.
exec x = e Assigns the result of the expression

to the parameter.
exit Terminates an agent or a procedure.
if (g1) {...} Conditional statement.
elseif (g2) {...}
... else {...}

in p x Collects a value via port p.
loop (g) {...} Loop statements.
loop (every ms)
{...}

out p x Sends a value via port p.
proc (g) p {...} Defines a procedure for port p.
select { Selects one of alternative choices.

alt (g1) {...}
alt (g2) {...}
... }

sti Turns on the interrupts handlers.

Fig. 1. Elements of Alvis communication diagrams
Rys. 1. Elementy diagramów komunikacji

(agent A) perform some activities and are similar to tasks
in the Ada programming language [5]. Passive agents (agent
B) do not perform any individual activity, and are similar
to protected objects (shared variables). Hierarchical agents
(agent C) represent submodels (modules). An agent can
communicate with other agents through ports. Ports are
drawn as circles placed at the edges of the corresponding
rounded box or rectangle. A communication channel is
defined explicitly between two agents and connects two

4/2011 Pomiary Automatyka Robotyka 1

NAUKA

Modelling concurrent systems with Alvis

Marcin Szpyrka
AGH University of Science and Technology, Department of Automatics

Abstract: Alvis is a new modeling language for developing concur-
rent (embedded) systems. The language is being developed within
the confines of the Alvis project at AGH University of Science and
Technology, Department of Automatics. The Alvis language com-
bines hierarchical graphical modelling with a high level programming
language. Moreover, a formal verification of a model, based on an
LTS graph (Labelled Transition System) is possible. The paper de-
scribes selected features of the language and the future plans of
the project.

Keywords: Alvis, embedded systems, concurrent systems,
modelling and verification

B eginning of the Alvis project dates back to April 2009.
The aim of the project is to work out a language

suitable for efficient modelling and formal verification of
concurrent systems. Especially, we focus on embedded
systems. Alvis [1] is a modelling language for real-time
concurrent systems. The key concept of Alvis is agent. The
name has been taken from the CCS process algebra [2]
and denotes any distinguished part of the system under
consideration with defined identity persisting in time. The
Alvis high level programming language is used to describe
behaviour of individual agents, and the Alvis graphical
language is used to define data and control flow among
agents.

Similar to other formal methods, Alvis provides a possi-
bility of formal verification of models. An Alvis model can
be transformed into a labelled transition system (LTS). Af-
ter encoding such a graph using the Binary Coded Graphs
(BCG) format, its properties are verified with the CADP
toolbox [3]. The paper presents a survey of main features
of the language and describes the state-of-art of the Alvis
project.

1. Alvis Code Language
The Alvis Code Language is used to implement the so-called
code layer of a model. It uses both Haskell functional pro-
gramming language [4] and original Alvis statements. The
layer is used to define data types used in the model under
consideration, functions for data manipulation and the be-
haviour of individual agents. Selected Alvis statements are
given in Table 1.

2. Communication diagrams
Graphical items used in a communication diagram design
are shown in Fig. 1. Agents in Alvis are divided into three
groups: active, passive and hierarchical ones. Active agents

Tab. 1. Selected Alvis statements
Tab. 1. Wybrane konstrukcje języka Alvis

Statement Description
cli Turns off interrupts handlers.
critical {...} Defines a critical section.
delay ms Delays an agent execution.
exec x = e Assigns the result of the expression

to the parameter.
exit Terminates an agent or a procedure.
if (g1) {...} Conditional statement.
elseif (g2) {...}
... else {...}

in p x Collects a value via port p.
loop (g) {...} Loop statements.
loop (every ms)
{...}

out p x Sends a value via port p.
proc (g) p {...} Defines a procedure for port p.
select { Selects one of alternative choices.

alt (g1) {...}
alt (g2) {...}
... }

sti Turns on the interrupts handlers.

Fig. 1. Elements of Alvis communication diagrams
Rys. 1. Elementy diagramów komunikacji

(agent A) perform some activities and are similar to tasks
in the Ada programming language [5]. Passive agents (agent
B) do not perform any individual activity, and are similar
to protected objects (shared variables). Hierarchical agents
(agent C) represent submodels (modules). An agent can
communicate with other agents through ports. Ports are
drawn as circles placed at the edges of the corresponding
rounded box or rectangle. A communication channel is
defined explicitly between two agents and connects two

4/2011 Pomiary Automatyka Robotyka 1



240

nauka

Pomiary automatyka Robotyka 12/2011

NAUKA

ports. Communication channels are drawn as lines (or
broken lines). An arrowhead points out the input port
for the particular connection (connection (A.p3, B.q)).
Communication channels without arrowheads represent
pairs of connections with opposite directions (connection
between ports A.p2 and C.r).

3. Model verification
From the Alvis point of view, a system is seen as a
set of agents that usually run concurrently, communi-
cate one with another, compete for shared resources
etc [1]. A state of an Alvis model is represented as a
sequence of states of its agents. A state of an agent X

is four-tuple S(X) = (am(X), pc(X), ci(X), pv(X)), where
am(X), pc(X), ci(X) and pv(X) denote mode, program
counter, context information list and parameters values of
the agent X respectively. In other words, to describe an
agent state we provide its mode (e.g. agent is running or
waiting), the index of the current statement, some con-
text information (e.g. the name of called procedure) and
current values of its parameters.

Behaviour of an Alvis model is considered at the level
of detail of single steps (single instructions), but agents can
perform its steps concurrently. States of an Alvis model and
transitions among them are represented using a labelled
transition system (LST graph for short [6]). Such graphs
also provide a formal semantic for Alvis models and make
a formal verification possible. For example, the CADP
toolbox [3] and model checking techniques can be used
to check whether a given model satisfies its requirements.
Moreover, CADP offers a wide set of functionalities, ranging
from step-by-step simulation to massively parallel model-
checking.

4. Alvis Toolkit
The Alvis language is still under development. Nowadays,
we focus on developing a computer software supporting the
language called Alvis Toolkit. The current version of Alvis
Editor – a tool to the design of Alvis models can be down-
loaded from the project website (http://fm.ia.agh.edu.pl).
Alvis Editor provides a full-featured graphical editor for
the design of hierarchical communication diagrams and a
code editor for the implementation of the code layer. The
second part of the toolkit is Alvis Translator used to gen-
erate an LTS graph for an Alvis model automatically. The
translator builds a Java representation of a model,
generates LTS graphs for individual agents and finally joins
them into the final LTS graph.

5. Future plans
Our future plans focus on developing computer tools for
Alvis and system layers for the models. The latter represent
the hardware environment the developed embedded system
is included into. For example, a designer can choose a
multiprocessor environment with an unlimited number of
microprocessors that makes Alvis a formal language for
modelling concurrent systems. On the other hand, a single
microprocessor environment can be chosen and agents will
compete for the processor. The Alvis Toolkit is expected
to include (finally): a translator from Alvis to Haskell

language, a graphical simulator and Alvis Components
Library with predefined componets to be used in models.

Bibliography
1. Szpyrka M., Matyasik P., Mrówka R.: Alvis – mod-

elling language for concurrent systems, [in:] Bouvry P.,
Gonzalez-Velez H., Kołodziej J. (eds.): Intelligent Deci-
sion Systems in Large-Scale Distributed Environments,
Volume 362 of SCI, Springer-Verlag (2011), 315–342.

2. Milner R.: Communication and Concurrency, Prentice-
Hall (1989).

3. Garavel H., Lang F., Mateescu R., Serwe W.: CADP
2006: A toolbox for the construction and analysis of
distributed processes, [in:] Computer Aided Verification
(CAV’2007), Volume 4590 of LNCS, Berlin, Germany,
Springer (2007), 158–163.

4. O’Sullivan B., Goerzen J., Stewart D.: Real World
Haskell, O’Reilly Media, Sebastopol, CA, USA (2008).

5. Barnes J.: Programming in Ada 2005, Addison Wesley
(2006).

6. Szpyrka M., Kotulski L.: Snapshot reachability graphs
for alvis models, [in:] König A., Dengel A., Hinkelmann
K., Kise K., Howlett R., Jain L. (eds.): Knowledge-Based
and Intelligent Information and Engineering Systems
– KES 2011, Volume 6881 of LNCS, Springer-Verlag,
Berlin, Heidelberg (2011), 190–199.

Modelowanie systemów współbieżnych
w języku Alvis

Streszczenie: Alvis jest nowym językiem modelowania przezna-
czonym do rozwijania systemów współbieżnych, zwłaszcza sys-
temów wbudowanych. Język jest rozwijany w Katedrze Automatyki
AGH w ramach projektu o tej samej nazwie. Język Alvis łączy
w sobie cechy języków programowania wysokiego poziomu z hie-
rarchicznym językiem modelowania połączeń między agentami.
Ponadto umożliwia on formalną weryfikację systemu wbudowanego
bazującego na grafie LTS, stanowiącego formalną reprezentację
przestrzeni stanów modelu. Artykuł zawiera przegląd podstawowych
informacji na temat języka i projektu.

Słowa kluczowe: Alvis, systemy wbudowane, systemy współ-
bieżne, modelowanie i weryfikacja

Marcin Szpyrka, PhD, Prof. of AGH

Prof. Marcin Szpyrka holds a position of as-
sociate professor in AGH UST in Krakow,
Poland, Department of Automatics. He has
a MSc in Mathematics and PhD and DSc
(habilitation) in Computer Science. He is
the author of over 70 publications, from
the domains of formal methods, software
engineering and knowledge engineering.
Among other things, he is author of 3 books
on Petri nets. His fields of interest also in-
clude theory of concurrency and functional programming. He is
currently leader of the Alvis project.
e-mail: mszpyrka@agh.edu.pl

2 Pomiary Automatyka Robotyka 4/2011

NAUKA

ports. Communication channels are drawn as lines (or
broken lines). An arrowhead points out the input port
for the particular connection (connection (A.p3, B.q)).
Communication channels without arrowheads represent
pairs of connections with opposite directions (connection
between ports A.p2 and C.r).

3. Model verification
From the Alvis point of view, a system is seen as a
set of agents that usually run concurrently, communi-
cate one with another, compete for shared resources
etc [1]. A state of an Alvis model is represented as a
sequence of states of its agents. A state of an agent X

is four-tuple S(X) = (am(X), pc(X), ci(X), pv(X)), where
am(X), pc(X), ci(X) and pv(X) denote mode, program
counter, context information list and parameters values of
the agent X respectively. In other words, to describe an
agent state we provide its mode (e.g. agent is running or
waiting), the index of the current statement, some con-
text information (e.g. the name of called procedure) and
current values of its parameters.

Behaviour of an Alvis model is considered at the level
of detail of single steps (single instructions), but agents can
perform its steps concurrently. States of an Alvis model and
transitions among them are represented using a labelled
transition system (LST graph for short [6]). Such graphs
also provide a formal semantic for Alvis models and make
a formal verification possible. For example, the CADP
toolbox [3] and model checking techniques can be used
to check whether a given model satisfies its requirements.
Moreover, CADP offers a wide set of functionalities, ranging
from step-by-step simulation to massively parallel model-
checking.

4. Alvis Toolkit
The Alvis language is still under development. Nowadays,
we focus on developing a computer software supporting the
language called Alvis Toolkit. The current version of Alvis
Editor – a tool to the design of Alvis models can be down-
loaded from the project website (http://fm.ia.agh.edu.pl).
Alvis Editor provides a full-featured graphical editor for
the design of hierarchical communication diagrams and a
code editor for the implementation of the code layer. The
second part of the toolkit is Alvis Translator used to gen-
erate an LTS graph for an Alvis model automatically. The
translator builds a Java representation of a model,
generates LTS graphs for individual agents and finally joins
them into the final LTS graph.

5. Future plans
Our future plans focus on developing computer tools for
Alvis and system layers for the models. The latter represent
the hardware environment the developed embedded system
is included into. For example, a designer can choose a
multiprocessor environment with an unlimited number of
microprocessors that makes Alvis a formal language for
modelling concurrent systems. On the other hand, a single
microprocessor environment can be chosen and agents will
compete for the processor. The Alvis Toolkit is expected
to include (finally): a translator from Alvis to Haskell

language, a graphical simulator and Alvis Components
Library with predefined componets to be used in models.

Bibliography
1. Szpyrka M., Matyasik P., Mrówka R.: Alvis – mod-

elling language for concurrent systems, [in:] Bouvry P.,
Gonzalez-Velez H., Kołodziej J. (eds.): Intelligent Deci-
sion Systems in Large-Scale Distributed Environments,
Volume 362 of SCI, Springer-Verlag (2011), 315–342.

2. Milner R.: Communication and Concurrency, Prentice-
Hall (1989).

3. Garavel H., Lang F., Mateescu R., Serwe W.: CADP
2006: A toolbox for the construction and analysis of
distributed processes, [in:] Computer Aided Verification
(CAV’2007), Volume 4590 of LNCS, Berlin, Germany,
Springer (2007), 158–163.

4. O’Sullivan B., Goerzen J., Stewart D.: Real World
Haskell, O’Reilly Media, Sebastopol, CA, USA (2008).

5. Barnes J.: Programming in Ada 2005, Addison Wesley
(2006).

6. Szpyrka M., Kotulski L.: Snapshot reachability graphs
for alvis models, [in:] König A., Dengel A., Hinkelmann
K., Kise K., Howlett R., Jain L. (eds.): Knowledge-Based
and Intelligent Information and Engineering Systems
– KES 2011, Volume 6881 of LNCS, Springer-Verlag,
Berlin, Heidelberg (2011), 190–199.

Modelowanie systemów współbieżnych
w języku Alvis

Streszczenie: Alvis jest nowym językiem modelowania przezna-
czonym do rozwijania systemów współbieżnych, zwłaszcza sys-
temów wbudowanych. Język jest rozwijany w Katedrze Automatyki
AGH w ramach projektu o tej samej nazwie. Język Alvis łączy
w sobie cechy języków programowania wysokiego poziomu z hie-
rarchicznym językiem modelowania połączeń między agentami.
Ponadto umożliwia on formalną weryfikację systemu wbudowanego
bazującego na grafie LTS, stanowiącego formalną reprezentację
przestrzeni stanów modelu. Artykuł zawiera przegląd podstawowych
informacji na temat języka i projektu.

Słowa kluczowe: Alvis, systemy wbudowane, systemy współ-
bieżne, modelowanie i weryfikacja

Marcin Szpyrka, PhD, Prof. of AGH

Prof. Marcin Szpyrka holds a position of as-
sociate professor in AGH UST in Krakow,
Poland, Department of Automatics. He has
a MSc in Mathematics and PhD and DSc
(habilitation) in Computer Science. He is
the author of over 70 publications, from
the domains of formal methods, software
engineering and knowledge engineering.
Among other things, he is author of 3 books
on Petri nets. His fields of interest also in-
clude theory of concurrency and functional programming. He is
currently leader of the Alvis project.
e-mail: mszpyrka@agh.edu.pl

2 Pomiary Automatyka Robotyka 4/2011

NAUKA

ports. Communication channels are drawn as lines (or
broken lines). An arrowhead points out the input port
for the particular connection (connection (A.p3, B.q)).
Communication channels without arrowheads represent
pairs of connections with opposite directions (connection
between ports A.p2 and C.r).

3. Model verification
From the Alvis point of view, a system is seen as a
set of agents that usually run concurrently, communi-
cate one with another, compete for shared resources
etc [1]. A state of an Alvis model is represented as a
sequence of states of its agents. A state of an agent X

is four-tuple S(X) = (am(X), pc(X), ci(X), pv(X)), where
am(X), pc(X), ci(X) and pv(X) denote mode, program
counter, context information list and parameters values of
the agent X respectively. In other words, to describe an
agent state we provide its mode (e.g. agent is running or
waiting), the index of the current statement, some con-
text information (e.g. the name of called procedure) and
current values of its parameters.

Behaviour of an Alvis model is considered at the level
of detail of single steps (single instructions), but agents can
perform its steps concurrently. States of an Alvis model and
transitions among them are represented using a labelled
transition system (LST graph for short [6]). Such graphs
also provide a formal semantic for Alvis models and make
a formal verification possible. For example, the CADP
toolbox [3] and model checking techniques can be used
to check whether a given model satisfies its requirements.
Moreover, CADP offers a wide set of functionalities, ranging
from step-by-step simulation to massively parallel model-
checking.

4. Alvis Toolkit
The Alvis language is still under development. Nowadays,
we focus on developing a computer software supporting the
language called Alvis Toolkit. The current version of Alvis
Editor – a tool to the design of Alvis models can be down-
loaded from the project website (http://fm.ia.agh.edu.pl).
Alvis Editor provides a full-featured graphical editor for
the design of hierarchical communication diagrams and a
code editor for the implementation of the code layer. The
second part of the toolkit is Alvis Translator used to gen-
erate an LTS graph for an Alvis model automatically. The
translator builds a Java representation of a model,
generates LTS graphs for individual agents and finally joins
them into the final LTS graph.

5. Future plans
Our future plans focus on developing computer tools for
Alvis and system layers for the models. The latter represent
the hardware environment the developed embedded system
is included into. For example, a designer can choose a
multiprocessor environment with an unlimited number of
microprocessors that makes Alvis a formal language for
modelling concurrent systems. On the other hand, a single
microprocessor environment can be chosen and agents will
compete for the processor. The Alvis Toolkit is expected
to include (finally): a translator from Alvis to Haskell

language, a graphical simulator and Alvis Components
Library with predefined componets to be used in models.

Bibliography
1. Szpyrka M., Matyasik P., Mrówka R.: Alvis – mod-

elling language for concurrent systems, [in:] Bouvry P.,
Gonzalez-Velez H., Kołodziej J. (eds.): Intelligent Deci-
sion Systems in Large-Scale Distributed Environments,
Volume 362 of SCI, Springer-Verlag (2011), 315–342.

2. Milner R.: Communication and Concurrency, Prentice-
Hall (1989).

3. Garavel H., Lang F., Mateescu R., Serwe W.: CADP
2006: A toolbox for the construction and analysis of
distributed processes, [in:] Computer Aided Verification
(CAV’2007), Volume 4590 of LNCS, Berlin, Germany,
Springer (2007), 158–163.

4. O’Sullivan B., Goerzen J., Stewart D.: Real World
Haskell, O’Reilly Media, Sebastopol, CA, USA (2008).

5. Barnes J.: Programming in Ada 2005, Addison Wesley
(2006).

6. Szpyrka M., Kotulski L.: Snapshot reachability graphs
for alvis models, [in:] König A., Dengel A., Hinkelmann
K., Kise K., Howlett R., Jain L. (eds.): Knowledge-Based
and Intelligent Information and Engineering Systems
– KES 2011, Volume 6881 of LNCS, Springer-Verlag,
Berlin, Heidelberg (2011), 190–199.

Modelowanie systemów współbieżnych
w języku Alvis

Streszczenie: Alvis jest nowym językiem modelowania przezna-
czonym do rozwijania systemów współbieżnych, zwłaszcza sys-
temów wbudowanych. Język jest rozwijany w Katedrze Automatyki
AGH w ramach projektu o tej samej nazwie. Język Alvis łączy
w sobie cechy języków programowania wysokiego poziomu z hie-
rarchicznym językiem modelowania połączeń między agentami.
Ponadto umożliwia on formalną weryfikację systemu wbudowanego
bazującego na grafie LTS, stanowiącego formalną reprezentację
przestrzeni stanów modelu. Artykuł zawiera przegląd podstawowych
informacji na temat języka i projektu.

Słowa kluczowe: Alvis, systemy wbudowane, systemy współ-
bieżne, modelowanie i weryfikacja

Marcin Szpyrka, PhD, Prof. of AGH

Prof. Marcin Szpyrka holds a position of as-
sociate professor in AGH UST in Krakow,
Poland, Department of Automatics. He has
a MSc in Mathematics and PhD and DSc
(habilitation) in Computer Science. He is
the author of over 70 publications, from
the domains of formal methods, software
engineering and knowledge engineering.
Among other things, he is author of 3 books
on Petri nets. His fields of interest also in-
clude theory of concurrency and functional programming. He is
currently leader of the Alvis project.
e-mail: mszpyrka@agh.edu.pl

2 Pomiary Automatyka Robotyka 4/2011




