
226

nauka

Pomiary automatyka Robotyka 12/2011

NAUKA

HeaRT rule inference engine in intelligent systems

Szymon Bobek
AGH University of Science and Technology, Department of Automatics

Abstract: Rules are one of the most important knowledge repre-
sentation methods. Rule-based expert systems proved to be a suc-
cessful AI technology in a number of areas. Building such systems
requires creating a rule-base, as well as providing an effective in-
ference mechanism that fires rules appropriate in a given context.
Building and maintaining such a rule-base is a very difficult task and
can be supported by a sepcially designed tools. Due to the fact that
inference engines usually are parts of such tools it is difficult to in-
tegrate such expert systems with external software. In this paper
a custom inference engine was presented, that implements three in-
ference algorithms and can be easily integrated with other systems.
Its usage in selected intelligent systems was also described.

Keywords: inference engine, rules, rule-based systems

D ue to the fact that rules are very simple and easy to
understand, they became a very powerful and popular

method for knowledge representation [14]. Rules constitute
a cardinal concept of the rule-based expert systems (RBS
for short) [3, 9] which are widely used artificial intelligence
systems [13]. Every rule-based expert system consist of
at least two parts: 1) knowledge base (KB), where rules
are stored and 2) inference engine, which is responsible
for reasoning tasks. Language for representing KB and the
inference algorithms are provided by an environment caled
shell, that is designed to create, maintain and run expert
systems.

The most popular expert systems shells are: Clips, Jess,
Drools [1]. Although KB languages are different in that
tools, all of them use unformalized production rules as
a knowledge representation, and Rete based algorithms for
reasoning tasks.

In this paper an overview of custom inference engine
called HeaRT is presented. It is an open source solution
that provides formal KB representation, different inference
algorithms, and ca be embedded within other intelligent
systems like Semantic Wikis.

1. Rule-based expert system shells
CLIPS is an expert system tool that is based on Rete
algorithm that has been developed by NASA. It provides
its own programming language that supports rule-based,
procedural and object-oriented programming [3]. Thanks
to this variety of programming paradigms implemented in
CLIPS, there are three ways to represent knowledge in it:
– rules, which are primarily intended for heuristic know-

ledge based on experience,

– functions, which are primarily intended for procedural
knowledge,

– object-oriented programming, also primarily intended
for procedural knowledge.

CLIPS has been written in C language. This makes the
tool very efficient and platform independent. However, the
integration with other existing systems is not easy. More-
over it supports only forward chaining and very simple
modularisation Jess is a rule engine and scripting environ-
ment written entirely in Sun’s Java language by Ernest
Friedman-Hill [2] that derives form CLIPS (C Language
Integrated Production System).

Jess supports both forward-chaining and backward
chaining. However designing and maintaining systems with
CLIPS or Jess is very difficult and inefficient. Modularisa-
tion of KB in Jess does not improve efficiency. Moreover
neither CLIPS nor Jess provides visual tools for design-
ing expert systems. Drools 5 introduces the Business Logic
integration Platform which provides a unified and inte-
grated platform for Rules, Workflow and Event Processing.
It uses Drools Expert inference engine that implements the
Rete-based algorithm called ReteOO. Its main advantages
is a visual representation of the inference process and easy
integration with Java. The drawbacks of Drools are: not
formal rule representation, no visual KB representation.

As an answer to the limitations of existing expert
system shells a custom inference engine called HeaRT was
developed.

2. HeaRT inference engine
HeKatE RunTime (HeaRT) [8] is a lightweight embeddable
rule inference engine built as a part of the HeKatE project
(See http://hekate.ia.agh.edu.pl.) [10]. The distinctive
features of the HeaRT engine are the following:
– support for an expressive rule language (XTT2) that has

a complete formal definition in the ALSV(FD) logic [7,
11],

– part of an expert system development platform that
provides visual knowledge representation [4, 5]

– three custom inference algorithms: forward chaining,
backward chaining and token driven inference

– rule base verification mechanisms called HalVA that
allows for checking for logical completeness, and redun-
dancy in the rule base, and

– lightweight and embeddable implementation using a fast
Prolog compiler.

4/2010 Pomiary Automatyka Robotyka 1

NAUKA

HeaRT rule inference engine in intelligent systems

Szymon Bobek
AGH University of Science and Technology, Department of Automatics

Abstract: Rules are one of the most important knowledge repre-
sentation methods. Rule-based expert systems proved to be a suc-
cessful AI technology in a number of areas. Building such systems
requires creating a rule-base, as well as providing an effective in-
ference mechanism that fires rules appropriate in a given context.
Building and maintaining such a rule-base is a very difficult task and
can be supported by a sepcially designed tools. Due to the fact that
inference engines usually are parts of such tools it is difficult to in-
tegrate such expert systems with external software. In this paper
a custom inference engine was presented, that implements three in-
ference algorithms and can be easily integrated with other systems.
Its usage in selected intelligent systems was also described.

Keywords: inference engine, rules, rule-based systems

D ue to the fact that rules are very simple and easy to
understand, they became a very powerful and popular

method for knowledge representation [14]. Rules constitute
a cardinal concept of the rule-based expert systems (RBS
for short) [3, 9] which are widely used artificial intelligence
systems [13]. Every rule-based expert system consist of
at least two parts: 1) knowledge base (KB), where rules
are stored and 2) inference engine, which is responsible
for reasoning tasks. Language for representing KB and the
inference algorithms are provided by an environment caled
shell, that is designed to create, maintain and run expert
systems.

The most popular expert systems shells are: Clips, Jess,
Drools [1]. Although KB languages are different in that
tools, all of them use unformalized production rules as
a knowledge representation, and Rete based algorithms for
reasoning tasks.

In this paper an overview of custom inference engine
called HeaRT is presented. It is an open source solution
that provides formal KB representation, different inference
algorithms, and ca be embedded within other intelligent
systems like Semantic Wikis.

1. Rule-based expert system shells
CLIPS is an expert system tool that is based on Rete
algorithm that has been developed by NASA. It provides
its own programming language that supports rule-based,
procedural and object-oriented programming [3]. Thanks
to this variety of programming paradigms implemented in
CLIPS, there are three ways to represent knowledge in it:
– rules, which are primarily intended for heuristic know-

ledge based on experience,

– functions, which are primarily intended for procedural
knowledge,

– object-oriented programming, also primarily intended
for procedural knowledge.

CLIPS has been written in C language. This makes the
tool very efficient and platform independent. However, the
integration with other existing systems is not easy. More-
over it supports only forward chaining and very simple
modularisation Jess is a rule engine and scripting environ-
ment written entirely in Sun’s Java language by Ernest
Friedman-Hill [2] that derives form CLIPS (C Language
Integrated Production System).

Jess supports both forward-chaining and backward
chaining. However designing and maintaining systems with
CLIPS or Jess is very difficult and inefficient. Modularisa-
tion of KB in Jess does not improve efficiency. Moreover
neither CLIPS nor Jess provides visual tools for design-
ing expert systems. Drools 5 introduces the Business Logic
integration Platform which provides a unified and inte-
grated platform for Rules, Workflow and Event Processing.
It uses Drools Expert inference engine that implements the
Rete-based algorithm called ReteOO. Its main advantages
is a visual representation of the inference process and easy
integration with Java. The drawbacks of Drools are: not
formal rule representation, no visual KB representation.

As an answer to the limitations of existing expert
system shells a custom inference engine called HeaRT was
developed.

2. HeaRT inference engine
HeKatE RunTime (HeaRT) [8] is a lightweight embeddable
rule inference engine built as a part of the HeKatE project
(See http://hekate.ia.agh.edu.pl.) [10]. The distinctive
features of the HeaRT engine are the following:
– support for an expressive rule language (XTT2) that has

a complete formal definition in the ALSV(FD) logic [7,
11],

– part of an expert system development platform that
provides visual knowledge representation [4, 5]

– three custom inference algorithms: forward chaining,
backward chaining and token driven inference

– rule base verification mechanisms called HalVA that
allows for checking for logical completeness, and redun-
dancy in the rule base, and

– lightweight and embeddable implementation using a fast
Prolog compiler.

4/2010 Pomiary Automatyka Robotyka 1



227

nauka

12/2011 Pomiary automatyka Robotyka

NAUKA

2.1. HeaRT in intelligent systems
HeaRT inference engine was used in a couple of project
that aim was to developed an intelligent system based on
rule-based knowledge. In this section those projects are
briefly described.

Fig. 1. Architecture of HeaRT
Rys. 1. Architektura silnika wnioskującego HeaRT

2.1.1. HeaRT in HeKatE
The main aims of the HeKatE project was to provide:
– an integrated design and implementation process,

– a visual representation of knowledge with a XTT decision
tables,

– an on-line formal analysis of the design of rule-based
systems.

HeaRT was used as an inference engine and verification
tool that could work both: as a standalone application or as
a inference server. An architecture of HeaRT is presented
in Fig. 1.

2.1.2. HeaRT as a verification tool in Rebit
Rebit system that was developed to enhance business
rules and processes management. It provides visual editors
and several different methods of representing knowledge.
A plugin to HeaRT, called HalVA was used in this project.
It is a part of the inference engine that is responsible for
verifying knowledge base in terms of logical completeness,
contradiction and redundancy. The process of verification
of the kowledge base is presented in Fig. 2.

2.1.3. HeaRT in Loki
Loki is a knowledge-based semantic wiki that combines
flexible knowledge representation with strong reasoning

Completeness

Determinism

Redundancy

HalVA

Syntax verifier

Plugin interface

Plugin interface

HMRL
HMRL

P
lu

g
in

 i
n
te

rf
a
c
e

Rebit System

Fig. 2. Verification system in REBIT
Rys. 2. System weryfikacji w REBIT

mechanisms available due to the usage of HeaRT inference
engine embedded withi it. On one hand, it is compatible
with popular semantic annotations [12].On the other, it
is integrated with a rule engine able to operate in various
modes over modularized rule bases. The unified underlying
representation makes it possible to process knowledge
acquired in different ways. The process of rendering a

Knowledge Base (KB)

HeaRTLoki

SMW Rules

R
e
a

s
o
n

in
g

Q
u
e
r y

in
g

DDI GDISPARQLRDF

E
x
p
o

rt

Fig. 3. Architecture of Loki with HeaRT
Rys. 3. Architektura Loki i HeaRT

wiki page in PlWiki with HeaRT looks as follows (see
Fig. 3):
1) Wiki engine parses the Wiki page and extracts rules

and reasoning queries (goals) for HeaRT.

2) Depending on a scope defined in the goal, PlWiki merges
the HMR code from wiki pages in a given scope and
passes it to HeaRT.

3) HeaRT performs the reasoning process and returns
results to PlWiki engine.

4) PlWiki renders complete wiki page with previously
parsed regular text and an answer to a given query
(goal) produced by HeaRT.

3. Future work
HeaRT inference engine is still developed. Current focus
is to embed HeaRT inference language in a BPMN design
tool that would allow for running simulation of business

2 Pomiary Automatyka Robotyka 4/2010



228

nauka

Pomiary automatyka Robotyka 12/2011

NAUKA

processes and verification of selected properties of such
system [6].

Bibliography
1. Bobek S., Kaczor K., Nalepa G. J., Overview of Rule

Inference Algorithms for Structured Rule Bases,.
2. Friedman-Hill E. (2003): Jess in Action, Rule Based

Systems in Java, Manning.
3. Giarratano J. C., Riley G. D. (2005): Expert Systems,

Thomson.
4. Kaczor K., Nalepa G. J. (2008): Design and Implemen-

tation of HQEd, the Visual Editor for the XTT+ Rule
Design Method, Technical Report CSLTR 02/2008,
AGH University of Science and Technology.

5. Kaczor K., Nalepa G. J. (2009): HaDEs – Presentation
of the HeKatE Design Environment, [in]: Baumeister
J., Nalepa G. J. (Eds.), 5th Workshop on Knowledge
Engineering and Software Engineering (KESE2009)
at the 32nd German conference on Artificial Intel-
ligence: September 15, 2009, Paderborn, Germany,
57–62, Paderborn, Germany.

6. Kluza K., Maślanka T., Nalepa G. J., Ligęza A.
(2011): Representing BPMN Diagrams with XTT2-
based Business Rules Proposal, [in]: Brazier F. M.,
Nieuwenhuis K., Pavlin G., Warnier M., Badica C.
(Eds.), Intelligent Distributed Computing V, Studies in
Computational Intelligence, Springer-Verlag, in press.

7. Nalepa G., Ligęza A., Kaczor K. (2011a): Overview
of Knowledge Formalization with XTT2 Rules, [in]:
Bassiliades N., Governatori G., Paschke A. (Eds.), Rule-
Based Reasoning, Programming, and Applications,
Lecture Notes in Computer Science, vol. 6826, 329–
336, Springer Berlin / Heidelberg.

8. Nalepa G. J. (2010): Architecture of the HeaRT Hybrid
Rule Engine, [in]: Rutkowski L., [et al.] (Eds.), Artificial
Intelligence and Soft Computing: 10th International
Conference, ICAISC 2010: Zakopane, Poland, June 13–
17, 2010, Pt. II, Lecture Notes in Artificial Intelligence,
vol. 6114, 598–605, Springer.

9. Nalepa G. J. (2011): Semantic Knowledge Engineering.
A Rule-Based Approach, Wydawnictwa AGH, Kraków.

10. Nalepa G. J., Ligęza A., HeKatE Methodology, Hybrid
Engineering of Intelligent Systems,.

11. Nalepa G. J., Ligęza A., Kaczor K., Formalization and
Modeling of Rules Using the XTT2 Method, In press.

12. Noga M., Kaczor K., Nalepa G. J., Lightweight rea-
soning methods in selected Semantic Wikis,.

13. Tadeusiewicz R. (2011): Introduction to intelligent
systems, [in]: Wilamowski B. M., Irwin J. D. (Eds.), In-
telligent systems, The Electrical Engineering Handbook
Series. The Industrial Electronics Handbook, 1–1–1–12,
Boca Raton; London; New York: CRC Press Taylor &
Francis Group, second edition edition.

14. van Harmelen F., Lifschitz V., Porter B. (Eds.) (2007):
Handbook of Knowledge Representation, Elsevier Sci-
ence.

Wykorzystanie regułowego silnika wnioskującego
HeaRT w systemach inteligentnych

Streszczenie: Reguły są jedną z najważniejszych metod reprezen-
tacji wiedzy. Systemy ekspertowe oparte na regułowej bazie wiedzy
są istotną technologią w zastosowaniach sztucznej inteligencji
w różnych dziedzinach. Budowanie takich systemów wymaga
stworzenia bazy wiedzy, jak również dostarczenia wydajnego mech-
anizmu pozwalającego na uruchamianie reguł i wnioskowanie.
Budowanie bazy wiedzy i zarządzanie nią jest bardzo trudnym
zadaniem. Może ono być wspierane poprzez narzędzia przez-
naczone do tego celu, jednak ponieważ silniki wnioskujące za-
zwyczaj stanowa integralną część takich narzędzi, integracja
ich z zewnętrznym oprogramowanie stanowi jeszcze trudniejsze
zadanie. W niniejszym artykule opisany został nowy regułowy
silnik wnioskujący, pozwalający na stosowanie kilku algorytmów
wnioskowania i łatwą integrację z innymi systemami. Przedstaw-
ione zostało również jego zastosowanie w wybranych inteligentnych
systemach komputerowych.

Słowa kluczowe: silniki wnioskowania, reguły, systemy regułowe

Szymon Bobek, MSc

Szymon Bobek, MSc holds a position of
a research assistant at the AGH UST in
Krakow, Poland, Department of Automatics.
Since 2008 he has been actively involved in
the international project HeKatE, where he
was responsible for a design and implemen-
tation of a runtime for XTT2 rule represen-
tation method. This was also a core subject
of his master thesis. After graduation from
the university in 2009 he has continued his
education and research as a member of the GEIST team.
e-mail: szymon.bobek@agh.edu.pl

4/2010 Pomiary Automatyka Robotyka 3




