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Abstract: Position control of DC motor is discussed and two control 
problems are investigated: first, time optimal and second, optimal 
in the sense of a quadratic performance index. Simple mathemati-
cal models, linear and nonlinear, of the DC motor are introduced. 
In the presented approach, the nonlinear model contains only the 
nonlinearity of static characteristic. Controllers based on linear and 
nonlinear models are constructed for both control problems. For the 
nonlinear model optimal solutions are computed with the use of the 
MSE method. Comparison of results of real-time and simulation ex-
periments are presented.

Keywords: optimal control, DC servo, MSE method, time optimal 
control

1. Introduction

A simple laboratory actuator based on DC motor will be 
investigated. Fig. 1 shows a block diagram of the actuator 
unit. The DC motor drives a shaft loaded with an inertia 
disk and then, by a gearbox, an output shaft connected with 
an output disk. The angle of rotation of the output disk is 
measured using an incremental encoder. A tachogenerator 
produces voltage proportional to the angular velocity.

The servomechanism is connected to a computer where 
a control algorithm is realized based on measurements of an-
gle and angular velocity. The armature voltage is the control 
signal for the DC motor. Since this voltage is subject to satu-
ration caused by an amplifier, the control signal takes values 
from the range ±8 V. The measurement system contains an 
I/O acquisition board equipped with a D/A converter and an 
A/D converter. The system has no inner feedback for dead 
zone compensation. The accuracy of measurement of veloc-
ity is 5 % while the accuracy of angle measurement is 0,1 %. 
The minimum sample time is equal to 0,01 s and this value 
is applied in all experiments.

Position control using the DC motor actuator will be 
discussed. In the beginning, a simple linear model of the 
servomechanism is shown and next, a nonlinear model is 

proposed. Both models are used to design time-optimal con-
trol. A time-suboptimal controller with reduced chattering 
is also constructed. The performance of the time-optimal 
and suboptimal control is studied in real-time experiments. 
The remaining part of the chapter is devoted to optimal and 
suboptimal control, in the sense of a quadratic performance 
index. First, an optimal linear-quadratic controller is applied 
to the real system with control saturation. The performance 
of this suboptimal control is compared with the optimal 
solution calculated with the nonlinear effects and control 
bounds taken into account. All  real-time experiments are 
performed in the MATLAB environment using the RTW 
and RTWT toolboxes [5].

2. Mathematical Models

2.1. Linear Model of DC Motor
A DC motor is described by two classical equations: elec-
trical [1]

( ) ( ) ( )ev t Ri t K tω= +

and mechanical

( ) ( ) ( )mJ t K i t tω βω= −�

where )(tv  is the input voltage, )(ti  is the armature current, 
)(tω  is the angular velocity of the rotor, R is the resistan-

ce of armature winding, J is the moment of inertia of the 
moving parts, b is the damping coefficient due to viscous 
friction, )(tKeω  is the EMF, and )(tiKm  is the electrome-
chanical torque. Time t is the independent variable. The 
model is linear because static and dry kinetic friction, as 
well as saturation are neglected. By combining the electrical 
and mechanical equations we obtain the equation of a first 
order inertial system

( ) ( ) ( )s sT t t K v tω ω= − +�

where the time constant sT  and gain sK  are given by
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The input voltage is bounded: max max( )v v t v− ≤ ≤ .
The model can be written in a state space notation. 

Let col 1 2( , )x x x=  be the state vector where 1x  is the 
angle (in [rad]) determining the position of the output 
disk, and 2 /x nω=  is the respective angular velocity (in 
[rad/s]), where n is the gear ratio. Time t is measured in [s]. 

Fig. 1.  Actuator unit
Rys. 1.  Serwomechanizm
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The dimensionless control signal is the scaled input voltage, 
max( ) ( )/u t v t v= . The admissible controls satisfy

 | ( )| 1u t ≤ .                             (1)

The state equations read

 1 2x x=�                               (2)

 2 2x ax bu= +�                           (3)

where  max1 0, 0s

s s

v nK
a   b

T T
= − < = > .

The initial state is given, 0(0)x x= . The parameters have 
the values 1,3sT =  s, 30n = , 0,016sK =  rad/(Vs), max 8v =  V 
which gives s 20,7692a −= − , and 2,954b = 2rad/s .

2.2. Nonlinear Model of DC Motor
In most cases small signal changes are presupposed for the 
design of control algorithms, so that the control system 
might be considered linear. In some applications however, 
nonlinearities in the control loop have to be taken into ac-
count. We will use a nonlinear model of the DC motor in 
the form

1 2x x=�                              (4)

2 2( ( ))x c u g x= −�
                      (5)

where the state variables 1x , 2x  and control u are defined as 
in the linear model.

The function g is an analytical approximation of the in-
verted steady state characteristic of the system, which has 
been determined experimentally. The original inverted char-
acteristic (see Fig. 2) is obtained from measurements. The 
results of measurements undergo a preliminary treatment 
consisting of scaling (to express them in appropriate units) 
and a shift (to remove the bias). An interesting property 
of the characteristic is that it is discontinuous at zero and 
shows distinct effects of dry friction in a vicinity of the ori-

gin. At both ends of the plot (that is, in the regions where 
the absolute values of the characteristic approach one), slight 
saturation effects are visible.

It is assumed that g has the form

2 1 2( )g x a x−= +

       ( )2 3 4
2 3 2 4 2 5 2 6 2 7 2exp( )a a x a x a x a x a x− − − − − −+ + + + + +  

( )2 3
8 9 2 10 2 11 2 12 2exp( )a a x a x a x a x− − − − −+ + + + , 02 <x        (6)

 0)0( =g                           (7)

 ( )2 3
2 1 2 2 3 2 4 2 5 2 6 2( ) exp( )g x a x a a x a x a x a x+ + + + + += + + + + +

        ( )2 3
7 8 2 9 2 10 2 11 2exp( )a a x a x a x a x+ + + + ++ + + + , 2 0x > .      (8)

Tab. 1. Coefficients of function g
Tab. 1. Współczynniki funkcji g

i ia−
ia+

1 2,5484639892834·10–1 5,354005768873343·10–1

2 –7,5967949432579·10–2 2,478875435258108·10–1

3 1,290788993123314·10–1 2,016835713871144

4  1,271609252756195 4,469844387253860·10–1

5 25,08717694766549 20,59405537372022

6 –6,2813551689544·10–2 –6,62

7 9,18 1,454448710668103·10–1

8  7,829080981244007·10–3  9,198608118171837·10–2

9 7,100659281016790·10–3 –2,04249100965408·10–2

10 2,141349009154247·10–3 1,580083444571437·10–3

11 2,153682576940481·10–4 1,46

12 –1,52

The coefficient / 22,99 rad sc =  is identified from step re-
sponses of the system. 

Fig. 2.  Inverted steady state characteristic u = g (x2)
Rys. 2.  Odwrotna charakterystyka statyczna u = g (x2)

The coefficients −
ia  and +

ia  are determined by the least-
squares method. The results are given below.

3. Position Control

Position control is a common task for actuators with DC mo-
tors. The control goal is to set the output angle at a reference 
value and stop the rotation of the shaft. Two such control 
problems are stated. The first is a time-optimal problem of 
steering the system from the origin 0 0x =  to a target state

1 2col( , )f f fx x x= ,   p
1

10
9

fx =  rad,   2 0fx = .            (9)

The second problem is to find a control that minimizes 
a quadratic performance index

( )2 2 21
1 1 22

0

( ) 50( ) dfS u x x x Ru t
∞

= − + +∫            (10)
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on trajectories of the system with the initial state 0 0x =  and 
1
fx  given by (9). The positive weighting coefficient R allows 

controlling the magnitude of u. We take 240R = rad2/s2,
a certain compromise between control accuracy and cost.

3.1. Time-optimal and Suboptimal Control  
– Linear Model

We first review the time-optimal control law for the lin-
ear model (2), (3) and later propose a suboptimal, or near 
time-optimal control strategy. The admissible controls u are 
bounded (see (1)). 

We will synthesize a time-optimal regulator that steers 
the system from an initial state 0x  to a target state fx  in 
minimum time. It can be easily verified that such a regula-
tor exists and is unique. To construct it we shift the target 
state to zero by defining new state vector 1 2=col( , )z z z  with 

fxxz 111 −= , fxxz 222 −= . Putting this to equations (2), (3) 
we obtain the state equations in new coordinates 

21 zz =�

2 2z az bu= +� .

The goal of time-optimal control changes to steering this 
system from an initial state fxxz −= 00  to the origin.

As time-optimal controls in the considered system take 
only boundary values, we will need the families of state tra-
jectories produced by constant controls equal to 1+  and 
-1 . Putting a constant u  into the second state equation 
we obtain

2 2( ) e (0) (1 e )at atbuz t z
a

= − − .            (11)

Since 2 1z az bu− =� � , we have 

2 1 2 1( ) ( ) (0) (0)z t az t but z az− = + −  and

( )tubztz
a

ztz −−+= )0()(1)0()( 2211 .             (12)

We distinguish two cases. If 2(0) 0az bu+ = , then 

tu
a
bztz −= )0()( 11 ,   u

a
btz −=)(2 .  

Let now 2(0) 0az bu+ ≠ . Formula (11) yields

2

2

( )1 ln
(0)

az t bu
t

a az bu
+

=
+

.

Substituting this expression in (12) we obtain the trajec-
tory in the state space

2 2 2
1 1 2

2

( ) (0) ( )
( ) (0) ln

(0)
z t z az t bubuz t z

a az bua
− +

= + −
+

.        (13)

The switching curve consists of two arcs. They are deter-
mined by (13) with the substitution 1 2(0) (0) 0z z= = . The 
first is obtained by putting 1u = +  and selecting that part 
of the curve where 2 0z ≤ . The second arc is obtained by 
putting 1u = −  and selecting that part of the curve where 

2 0z ≥ . The switching curve has thus the form

 1 2( )z zϕ=

 

2 2 2

2 2 2

ln 1 , 0
1

ln 1 , 0.

b az z z
a b

a b az z z
a b

  
− + ≤   =    + − ≥   

The time-optimal regulator is given by (see Figure 3)

( )u zρ=
1 2 1 2 2

1 2 1 2 2

1, ( ) or ( ) and 0
0, 0

1, ( ) or ( ) and 0.

z z z z z
z

z z z z z

ϕ ϕ

ϕ ϕ

 − > = <
= =
 + < = >

                                                                
(14)

 

For 0 0x =  and fx  given by (9), the time-optimal con-
trol has one switching at 1 1,6t = s and the optimal horizon 
is 2,34T = s.

The time-optimal control is very sensitive to parameter 
variations. Therefore the model coefficients should be pro-
perly identified. It is a well known effect that the time-op-
timal rule (14) results in chattering of the servomechanism 
due to measuring noise. Near the origin the motor is excited 
by a control sequence: +1, –1, +1... switched with a high 
frequency. To avoid such effects one can change the time-
optimal algorithm in a neighborhood of the origin. For ex-
ample, a decaying factor can reduce the amplitude of control.

The time-suboptimal control algorithm that reduces the 
chattering of the system works according to (14), but with 
the control bounds modified in a neighborhood of the tar-
get. In the beginning max 1u =  (as in (1)). In each time step 
it is checked if 1| |z M< , for some predetermined M > 0. If 
so, the bound for u is decreased, 1

max max

| |
:

z
u u

M
= . Other-

wise, max : 1u = .

3.2. Time-optimal Control – Nonlinear Model
The nonlinear model of DC motor is given by (4) and (5), 
with the function )( 2xg  determined by (6)–(8). The control 
u satisfies (1). To remove the discontinuity of )( 2xg  at zero 
we multiply it by an arctan function. The state equations 
take the form

21 xx =�                              (15)

( )2
2 2 2( ) |arctan( )|x c u g x xπ= − a�            (16)

Fig. 3. Time-optimal state trajectories. The switching curve is drawn 
in bold line

Rys. 3. Czasooptymalne trajektorie. Krzywa przełączeń zaznaczo-
na pogrubioną linią
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where 1000α = . The adjoint equations read

    1 0ψ =�

22
2 1 2 2 2 22 2

2

( )
arctan( ) ( ) sgn

1
g x

c x g x x
xπ

α
α

 
= − + + ∇ + 

y y y a�

The time-optimal control has a bang-bang character, 
2( ) sgn ( )u t t= y . The optimal solution is computed with 

the use of the MSE method described in [2–4]. The optimal 
horizon is 2,2713T =  s and the optimal control has one 
switching at 1 1,596t = s.

3.3. Time-optimal Control Experiments
In the investigated system the sample time cannot be less 
than 0,01 s due to the applied technology. For this reason in 
real-time experiments the switching time 1t  is set to 1,6 s 
and the accuracy of measurement of the horizon T is 0,01 s. 

Two experiments are performed and compared. In the 
first experiment, the time-optimal control calculated for the 

linear model is used, with the horizon T = 2,34 s and one 
switching time 6,11 =t s. In the second, the time-optimal 
control computed for the nonlinear model is applied. As the 
switching time is the same as in the linear case, the only 
difference is that the control is switched off and the result 
assessed earlier, at the optimal horizon T = 2,27 s. It appears 
that the angular velocity of the DC motor is not equal to 
zero at the corresponding times T in both cases. This means 
that the switching time is a little too small, and in conse-
quence the angle does not reach the target value.

To correct the errors we increase the switching time to 
1,62 s and repeat the experiments. The horizons are not 
changed. Fig. 4 presents the responses of the real DC motor 
after improving the switching time. Note that the angle and 
velocity errors are less at the horizon optimal according to 
the nonlinear model. The relative angle error is then equ-
al to –1,31 % whereas it is –2,91 % at the optimal horizon 
calculated for the linear model. The responses presented in 
Fig. 4 are undistinguishable up to 2,27 s.

From this time onward they differ because the controls 
are switched off (set to zero) at the corresponding, different 
optimal horizon times. A comparison of the presented expe-
riments and simulation results obtained with the use of the 
nonlinear model and the modified time-optimal control is 
given in Fig. 5 where the errors for time greater than 2,2 s 
are plotted. The position error is denoted by 1ε  and the ve-
locity error by 2ε . Each curve represents the difference be-
tween the simulated and real-time trajectories obtained for 
the same, modified time-optimal control.

3.4. Comparison of Time-optimal  
and Suboptimal Solutions

The time-suboptimal algorithm  previously described has 
been applied in a real-time experiment. The control is bound-
ed according to (1) and the parameter 1,0=M rad. The ini-
tial state 0 0x =  and the target state fx  is given by (9).

The comparison of the time-optimal control for the nonlin-
ear model and the time-suboptimal control is shown in Fig. 6. 
The steady state error of 1x  is 0,4 % if the optimal control is 

Fig. 5.  Errors of real-time experiments in comparison to simula-
tion results (dashed lines – linear model, solid line – non-
linear model)

Rys. 5. Porównanie eksperymentów w czasie rzeczywistym z wyni-
kami symulacji (linie przerywane – model liniowy, linie 
ciągłe – model nieliniowy)

Fig. 4. “Improved” time-optimal trajectories and controls (dashed 
lines – linear model, solid lines – nonlinear model)

Rys. 4. “Poprawione” trajektorie czasooptymalne i sterowania (linie 
przerywane – model liniowy, linie ciągłe – model nieliniowy)

Fig. 6. Time-suboptimal (dashed lines) and time-optimal trajecto-
ries and control (solid lines)

Rys. 6. Suboptymalne (linie przerywane) i czasooptymalne trajek-
torie i sterowania (linie ciągłe)
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applied, and 4 % in the case of suboptimal control. The con-
trol time is 2,27 s in the first case and 3,25 s in the second.

Note that the nonlinear model used to calculate the op-
timal control is not precisely identified. In our very simple 
approach, the model contains only the nonlinearity of static 
characteristic. Despite it the optimal control obtained with 
the aid of the nonlinear model is much better than the sub-
optimal one, calculated according to the linear model.

3.5. Quadratic-optimal and Suboptimal Control
Position control, suboptimal and optimal in the sense of the 
quadratic performance index (10) is considered in this sec-
tion. First, we use the linear model (2), (3) of the DC motor 
to design an LQ-optimal controller. The control bounds are 
neglected in the calculations. The solution of the LQ problem 
with the initial state 00 =x  and fx1  (9) yields the controller 
gain matrix K = [0,4564   0,3569]. The suboptimal controller 
used in the experiment has the form

 ( ), | ( )| 1
( )

sgn( ( )), | ( )| 1.lq

Kz t Kz t
u t

Kz t Kz t
 ≤= −  >

Note that this controller is not optimal with respect to the 
performance index (10). The corresponding value of this index 
is 2,13341=lqS . Next, an optimal control optu  is calculated for 
the nonlinear model (15), (16) with the control bounds (1) tak-
en into consideration. In this case the Hamiltonian has a form

2 2 21
1 2 2 2 1 1 22( ( )) 25( ) ( )fH x c u g x x x x Ru= + − − − − +y y

and the adjoint equations read

1 1 150( )fx xψ = −�

22
2 1 2 2 2 2 22 2

2

( )
arctan( ) ( ) sgn

1
g x

c x g x x x
xπ

α
ψ ψ ψ α

α
 

= − + + ∇ + + 
�

The optimal control maximizes the Hamiltonian and sa-
tisfies

    .

2 2

2

( ), | ( )| 1( )
sgn ( ), otherwise

c ct tu t R R
t

ψ ψ

ψ


≤= 



The optimal solution is computed with the use of the 
MSE method described in [2, 3]. The optimal value of the 
performance index is 12465,24optS = . Figures 7, 8 present 
the results of simulation and real-time experiments, respec-
tively. In both figures a comparison of the controls lqu  and 

optu  is shown. Solid lines are related to the optimal control 
and dashed lines to the suboptimal control.

4. Conclusions

Position control of DC motor is discussed and two control 
problems are investigated: first, time optimal and second, 
optimal in the sense of a quadratic performance index. Sim-
ple mathematical models, linear and nonlinear, of the DC 
motor are introduced. In the presented approach, the non-
linear model contains only the nonlinearity of static charac-
teristic. Controllers based on linear and nonlinear models 
are constructed for both control problems. For the nonlinear 
model optimal solutions are computed with the use of the 
MSE method. The experimental results show that the opti-
mal controls obtained with the aid of the nonlinear model, 
even not very accurate, give better results than calculated 
according to the linear model.
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Optymalne sterowanie laboratoryjnym  
serwomechanizmem z silnikiem prądu stałego

Streszczenie: W pracy przedyskutowano dwa problemy stero-
wania pozycyjnego serwomechanizmem z silnikiem prądu stałe-
go: problem czasooptymalny oraz sterowanie optymalne w sen-
sie kwadratowego wskaźnika jakości. Przedstawiono proste mo-
dele matematyczne: liniowy i nieliniowy. W nieliniowym modelu 
uwzględniono jedynie nieliniową charakterystykę statyczną sil-
nika. Dla obydwu problemów zaprojektowano regulatory wyko-
rzystując modele liniowy i nieliniowy. Optymalne sterowanie dla 
modelu nieliniowego obliczono za pomocą metody MSE. Przed-
stawiono porównanie eksperymentów symulacyjnych i ekspery-
mentów czasu rzeczywistego.

Słowa kluczowe: sterowanie optymalne, serwomechanizm, me-
toda MSE, sterowanie czasooptymalne
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