Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Investigations on integration of optoelectronic components with LTCC (low temperature co-fired ceramics) microfluidic module are presented. Design, fabrication and characterization of the ceramic structure for optical absorbance is described as well. The geometry of the microfluidic channels has been designed according to results of the CFD (computational fluid dynamics) analysis. A fabricated LTCC-based microfluidic module consists of an U-shaped microchannel, two optical fibers and integrated light source (light emitting diode) and photodetector (light-to-voltage converter). Properties of the fabricated microfluidic system have been investigated experimentally. Several concentrations of potassium permanganate (KMnO4) in water were used for absorbance/transmittance measurements. The test has shown a linear detection range for various concentrations of heavy metal ions in distilled water. The fabricated microfluidic structure is found to be a very useful system in chemical analysis.
Czasopismo
Rocznik
Tom
Strony
713--721
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
autor
- Wrocław University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wrocław, Poland, karol.malecha@pwr.wroc.pl
Bibliografia
- [1] Gravesen, P., Branebjerg, J., Søndergård Jensen, O. (1993). Microfluidic - a review. J. Micromech. Microeng., (3), 168-182.
- [2] Wautelet, M. (2001). Scaling laws in the macro-, micro- and nanoworlds. European Journal of Physics, (22), 601-611.
- [3] Manz, A., Graber, N., Widmem, H. M. (1990). Miniaturized total chemical analysis system: a novel concept for chemical sensing. Sens. Actuators B, (1), 244-248.
- [4] Duffy, D. C., Cooper McDonald, J., Schueller, O. J. A., Whitesides, G. M. (1998). Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem., (70), 4974-4984.
- [5] Fujii, T. (2002). PDMS-based microfluidic devices for biomedical applications. Microelectronic Engineering, (61-62), 907-914.
- [6] Merkel, T., Graeber, M., Pagel, L. (1999). A new technology for fluidic Microsystems based on PCB technology. Sens. Actuators A, (77), 98-105.
- [7] Läritz, Ch., Pagel, L. (2000). A microfluidic pH-regulation system based on printed circuit board technology. Sens. Actuators A, (84), 230-235.
- [8] Gongora-Rubio, M. R., Espinoza-Vallejos, P., Sola-Laguna, L., Santiago-Avilés, J. J. (2001). Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST). Sens. Actuators A, (89), 222-241.
- [9] Golonka, L. J., Roguszczak, H., Zawada, T., Radojewski, J., Grabowska, I., Chudy, M., Dybko, A., Brzózka, Z., Stadnik, D. (2005). LTCC based microfluidic system with optical detection. Sens. Actuators B, (111-112), 396-402.
- [10] Ibáñez-Garcia, N., Martinez-Cisneros, S., Valdés, F., Alonso, J. (2008). Green-tape ceramics. New technological approach for integrating electronics and fluidics in microsystems. Trends in Analytical Chemistry, (27), 24-33.
- [11] Malecha, K., Golonka, L. J. (2008). Microchannel fabrication process in LTCC ceramics. Microelectronics Reliability, (48), 866-871.
- [12] Malecha, K., Golonka, L. J. (2009). Three-dimensional structuration of zero-shrinkage LTCC ceramics for microfluidic applications. Microelectronics Reliability, (49), 585-591.
- [13] Andrijasevic, D., Smetana, W., Zehetner, J., Zoppel, S., Brenner, W. (2007). Aspects of micro structuring low temperature co-fired ceramic (LTCC) for realization complex 3D objects by embossing. Microelectronic Engineering, (84), 1198-1201.
- [14] Rabe, T., Kuchenecker, P., Schulz, B. (2007). Hot embossing: an alternative method to produce cavities in ceramic multilayer. Int. J. App. Ceram. Technol., (4), 38-46.
- [15] Kita, J., Dziedzic, A., Golonka, L. J., Zawada, T. (2002). Laser treatment of LTCC for 3D structures and elements fabrication. Microelectronics International, (19), 14-18.
- [16] Nowak, D., Miś, E., Dziedzic, A., Kita, J. (2009). Fabrication and electrical properties of laser-shaped thick-film and LTCC microresistors. Microelectronics Reliability, (49), 600-606.
- [17] Markowski, P. (2011). Thick-film photoimageable and laser-shaped arms for thermoelectric microgenerators. Microelectronics International, (28), 43-50.
- [18] Barlow, F., Wood, J., Elshabini A., Stephens, E. F., Feeler, R., Kemner, G., Junghansm J. (2009). Fabrication of precise fluidic structures in LTCC. Int. J. App. Ceram. Technol., (6), 18-23.
- [19] Bembnowicz, P., Małodobra, M., Kubicki, W., Szczepańska, P., Górecka-Drzazga, A., Dziuban, J., Jonkisz, A., Karpiewska, A., Dobosz, T., Golonka, L. J. (2010). Preliminary studies on LTCC based PCR microreactor. Sens. Actuators B, (150), 715-721.
- [20] Thelemann, T., Fisher, M., Groß, A., Müller, J. (2007). LTCC-based fluidic components for chemical applications. Journal of Microelectronics and Electronic Packaging, (4), 167-172.
- [21] Bargiel, S., Górecka-Drzazga, A., Dziuban, J., Prokaryn, P., Chudy, M., Dybko, A., Brzózka, Z. (2004). Nanoliter detectors for flow systems. Sens. Actuators A, (115), 245-251.
- [22] Grabowska, I., Sajnoga, M., Juchniewicz, M., Chudy, M., Dybko, A., Brzózka, Z. (2007). Microfluidic system with electrochemical and optical detection. Microelectronic Engineering, (84), 1741-1743.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0087-0017