PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Infrared imaging fourier transform spectrometer as the stand-off gas detection system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the detection of gases using an infrared imaging Fourier-transform spectrometer (IFTS). The Telops company has developed the IFTS instrument HyperCam, which is offered as a short- or long-wave infrared device. The principle of HyperCam operation and methodology of gas detection has been shown in the paper, as well as theoretical evaluation of gas detection possibility. Calculations of the optical path between the IFTS device, cloud of gases and background have been also discussed. The variation of a signal reaching the IFTS caused by the presence of a gas has been calculated and compared with the reference signal obtained without the presence of a gas in IFTS's field of view. Verification of the theoretical result has been made by laboratory measurements. Some results of the detection of various types of gases has been also included in the paper.
Rocznik
Strony
607--620
Opis fizyczny
Bibliogr. 21 poz., fot., rys., wykr.
Twórcy
autor
  • Military University of Technology, Institute of Optoelectronics, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland, mkastek@wat.edu.pl
Bibliografia
  • [1] Harig, R., Matz, G. (2001). Toxic Cloud Imaging by Infrared Spectrometry: A Scanning FTIR System for Identification and Visualization. Field Analytical Chemistry and Technology, 5(1-2), 75-90.
  • [2] Harig, R., Matz, G., Rusch, P. (2002). Scanning Infrared Remote Sensing System for Identification, Visualization, and Quantification of Airborne Pollutants. Proc. of SPIE, 4574, 83-94.
  • [3] Griffin, M. K., Kerekes, J. P., Farrar, K. E., Burke, H.-H. K. (2001). Characterization of Gaseous Effluents from Modeling of LWIR Hyperspectral Measurements. Proc. of SPIE, 4381, 360-369.
  • [4] Burr, T., Hengartner, N. (2006). Overview of Physical Models and Statistical Approaches for Weak Gaseous Plume Detection using Passive Infrared Hyperspectral Imagery. Sensors, 6(12), 1721-1750.
  • [5] Lachance, R. L., Thériault, J.-M., Lafond, C., Villemaire, A. J. (1998). Gaseous emanation detection algorithm using a Fourier transform interferometer operating in differential mode. Proc. of SPIE, 3383, 124.
  • [6] Thériault, J.-M. (2001). Passive standoff detection of chemical vapors by differential FTIR radiometry, Technical Report Defence Research Establishment Valcartier (DREV) TR-2000-156.
  • [7] Heasler, P., Posse, C., Hylden, J., Anderson, K. (2007). Nonlinear Bayesian Algorithms for Gas Plume Detection and Estimation from Hyper-spectral Thermal Image Data. Sensors, 7, 905-920.
  • [8] Spisz, T. S., Murphy, P. K., Carter, C. C., Carr, A. K., Vallières, A., Chamberland, M. (2007). Field test results of standoff chemical detection using the FIRST. Proc. of SPIE, 6554, 655408.
  • [9] Farley, V., Chamberland, M., Lagueux, P., Vallières, A., Villemaire, A., Giroux, J. (2007). Chemical agent detection and identification with a hyperspectral imaging infrared sensor. Proc. of SPIE, 6661, 66610L.
  • [10] Vallières, A., Villemaire, A., Chamberland, M., Belhumeur, L., Farley, V., Giroux, J., Legault, J.-F. (2005). Algorithms for chemical detection, identification and quantification for thermal hyperspectral imagers. Proc. of SPIE, 5995, 59950G.
  • [11] Chamberland, M., Belzile, C., Farley, V., Legault, J.-F., Schwantes, K. (2004). Advancements in field-portable imaging radiometric spectrometer technology for chemical detection. Proc. of SPIE, 5416, 63-72.
  • [12] Farley, V., Belzile, C.; Chamberland, M., Legault, J.-F., Schwantes, K. (2004). Development and testing of a hyper-spectral imaging instrument for field spectroscopy. Proc. of SPIE, 5546, 29-36.
  • [13] Madura, H., Kastek, M., Piątkowski, T. (2007). Automatic compensation of emissivity in three-wavelength pyrometers. Infrared Physics & Technology, 51(1), 1-8.
  • [14] Madura, H., Kastek, M., Sosnowski, T., Orżanowski, T. (2010). Pyrometric method of temperature measurement with compensation for solar radiation. Metrology and Measurement Systems, 17(1), 77-86.
  • [15] Bielecki, Z., Chrzanowski, K., Matyszkiel, R., Piątkowski, T., Szulim, M. (1999). Infrared pyrometer for temperature measurement of objects of both wavelength- and time-dependent emissivity. Optica Applicata, 29(3), 284-292.
  • [16] Madura, H., Piątkowski, T., Powiada, E. (2004). Multispectral precise pyrometer for measurement of seawater surface temperature. Infrared Physics & Technology, 46(1-2), 69-73.
  • [17] Champion, J.-P., Chance, K., Coudert, L. H., et al. (2009). The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer 110, 533-572.
  • [18] Sharpe, S. W., Johnson, T. J., Sams, R. L., Chu, P. M., Rhoderick, G. C., Johnson, P. A. (2004). Gas-Phase Databases for Quantitative Infrared Spectroscopy. Applied Spectroscopy, 58(12), 1452-1461.
  • [19] Kastek, M., Sosnowski, T., Orżanowski, T., Kopczyński, K., Kwaśny, M. (2009). Multispectral gas detection method. WIT Transactions on Ecology and the Environment, 123, 227-236.
  • [20] Włodarski, M., Kopczyński, K., Kaliszewski, M., Kwaśny, M., Mularczyk-Oliwa, M., Kastek, M. (2009). Application of advanced optical methods for classification of air contaminants. WIT Transactions on Ecology and the Environment, 123, 237-247.
  • [21] Tremblay, P., Savary, S., Rolland, M., Villemaire, A., Chamberland, M., Farley, V., et al. (2010). Standoff gas identification and quantification from turbulent stack plumes with an imaging Fourier-transform spectrometer. Proc. of SPIE, 7673, 76730H.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0087-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.