PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analog Circuit Fault Classification Using Improved One-Against-One Support Vector Machines

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a novel strategy of fault classification for the analog circuit under test (CUT). The proposed classification strategy is implemented with the one-against-one Support Vector Machines Classifier (SVC), which is improved by employing a fault dictionary to accelerate the testing procedure. In our investigations, the support vectors and other relevant parameters are obtained by training the standard binary support vector machines. In addition, a technique of radial-basis-function (RBF) kernel parameter evaluation and selection is invented. This technique can find a good and proper kernel parameter for the SVC prior to the machine learning. Two typical analog circuits are demonstrated to validate the effectiveness of the proposed method.
Rocznik
Strony
569--582
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wzory
Twórcy
autor
autor
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing City, Jiangsu Province, China, cuijiang@nuaa.edu.cn
Bibliografia
  • [1] Starzyk, J. A., Pang, J., Manetti, S., Piccirilli, M. C., Fedi, G. (2000). Finding Ambiguity Groups in Low Testability Analog Circuits. IEEE Trans. Circuits and Syst.: Fundamental Theory and Applications, 47(8), 1125-1135.
  • [2] Wang, P., Yang, S. (2005). A New Diagnosis Approach for Handling Tolerance in Analog and Mixed-Signal Circuits by Using Fuzzy Math. IEEE Trans. on Circuits and Systems-I: Regular Papers, 52(10), 2118-2127.
  • [3] Bandler, J. W., Salama, A. E. (1985). Fault Diagnosis of Analog Circuits. Proc. IEEE, 73(8), 1279-1325.
  • [4] Golonek, T., Rutkowski, J. (2007). Genetic-Algorithm-Based Method for Optimal Analog Test Points Selection. IEEE Trans. on Circuits and Systems-II: Express Briefs, 54(2), 117-121.
  • [5] Dimopoulos, M. G., Spyronasios, A. D., Papakostas, D. K., Hatzopoulos, A. A. (2009). Wavelet Energy-based Testing Using Supply Current Measurements. IET Sci. Meas. Technol., 4(2), 76-85.
  • [6] Catelani, M., Fort, A., Alippi, C. (2002). A Fuzzy Approach for Soft Fault Detection in Analog Circuits. Meas., 32(1), 73-83.
  • [7] Tan, Y., He, Y. (2008). A Novel Method for Fault Diagnosis of Analog Circuits Based on WP and GPNN. Int. J. of Electron., 95(5), 431-439.
  • [8] Aminian, M., Aminian, F., Collins, H. W. (2002). Analog Fault Diagnosis of actual Circuits Using Neural Networks. IEEE Trans. on Instrum. Meas., 51(3), 1546-1554.
  • [9] El-Gamal, M. A., Abdulghafour, M. (2003). Fault Isolation in Analog Circuits using A Fuzzy Inference System. Comput. Electr. Eng., 29(1), 213-229.
  • [10] Grzechca, D., Rutkowski, J. (2009). Fault Diagnosis in Analog Electronic Circuits-The SVM Approach. Metrol. Meas. Syst., 16(4), 583-597.
  • [11] Salat, R., Osowski, S. (2003). Analog Filter Diagnosis Using Support Vector Machine. In proc. ECCTD, Krakow, Poland, 421-424.
  • [12] Siwek, K., Osowski, S., Markiewicz, T. (2006). Support Vector Machine for Fault Diagnosis in Electrical Circuits. In proc. NORSIG, Reykjavik, Iceland, 342-345.
  • [13] Sun, Y., Chen, G., Li, H. (2006). Analog Circuits Fault Diagnosis Using Support Vector Machine. In Proc. ICCCAS, Kitakyushu, Japan, 1003-1006.
  • [14] Huang, K., Stratigopoulos, H. G., Mir, S. (2010). Fault Diagnosis of Analog Circuits Based on Machine Learning. In Proc. DATE, Dresden, Germany, 1761-1766.
  • [15] Cui, J., Wang, Y. (2011). A Novel Approach of Analog Circuit Fault Diagnosis Using Support Vector Machines Classifier. Meas., 44(1), 281-289.
  • [16] Cui, J. Wang, Y. (2010). A Novel Approach of Analog Fault Classification Using A Support Vector Machines Classifier. Metrol. Meas. Syst., 17(4), 561-582.
  • [17] Hsu, C. W., Lin, C. J. (2002). A Comparison of Methods for Multi-class Support Vector Machines. IEEE Trans. on Neural Networks, 13(2), 415-425.
  • [18] Vapnik, V. N. (1998). Statistical Learning Theory. New York: Wiley.
  • [19] Chapelle, O., Haffner, P., Vapnik, V. N. (1999). Support Vector Machines for Histogram-based Image Classification. IEEE Trans. on Neural Networks, 10(5), 1055-1064.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0087-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.