PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new diagnosing method of the internal structure of the titanium fan of a jet engine with laser ultrasonics

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Advanced metallic material processes (titanium) are used or developed for the production of heavily loaded flying components (in fan blade construction). The article presents one process for diagnosing the blade interior by means of laser ultrasonography. The inspection of these parts, which are mainly made of titanium, requires the determination of the percentage of bonded grain sizes from around 10 to 30 žm. This is primarily due to the advantages of a high signal-to-noise ratio and good detection sensitivity. The results of the research into the internal blade structure are attached.
Rocznik
Strony
441--451
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
  • Poznan University of Technology, Faculty of Mechanical Engineering, Institute of Mechanical Technology, pl. M. Sklodowskiej-Curie 5, 60-965 Poznan, Poland, swornowski@wp.pl
Bibliografia
  • [1] Boyer, R.R., Briggs, R.D. (2005). Titanium cost reduction strategies for Boeing Aircraft. Materials Forum, 29.
  • [2] Examination of a Failed Fan Blade Rolls-Royce RB211, Trent 892 Turbofan Engine (2001). Technical Analysis Report, Australian Transport Safety Bureau (ASTB), 8.
  • [3] Bulletin SB72-9660 (2001). Rolls-Royce.
  • [4] Blackshire, J.L. (2004). Interferometric and Holographic Imaging of Surface Wave Patterns for Characterization of Material Degradation. Eds. Meyendorf, Nagy, and Rokhlin, Chapter 4 in Nondestructive Materials Characterization, Springer.
  • [5] Monchalin, J.-P. et al. (1998). Laser-ultrasonics: from the Laboratory to the Shop Floor. Advanced performance materials, 5, 7-23.
  • [6] Scruby, C.B., Drain, L.E. (1990). Laser Ultrasonics: Techniques and Applications. Adam Hilger, 136-141.
  • [7] Ihara, I., Takahashi, M., (2008). Laser–Ultrasonic Monitoring of Temperature Distribution of Material Surface during Heating. Mat. of 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications, Montreal, Canada, 188-192.
  • [8] Mizutani, K. et al. (2006). Measurement of Temperature Distribution using Acoustic Reflector. Jpn. J. Appl. Phys., 45, 4516-4520.
  • [9] Takahashi, M., Ihara, I. (2008). Ultrasonic Monitoring of Internal Temperature Distribution in a Heated Material. Jpn J. App. Phys., 47, 3894-3898.
  • [10] Blouin, A. et al. (1998). Improved Resolution and Signal-to-Noise Ratio in Laser-Ultrasonics by Synthetic Aperture Focusing Technique (SAFT) processing. Optics Express, 2, 531-539.
  • [11] Lévesque, D. et al. (2002). Performance of Laser Ultrasonic F-SAFT Imaging. Ultrasonics, 40, 1057-1063.
  • [12] Lévesque, D. et al. (2002). Laser-Ultrasonic Inspection of Surface-Breaking Cracks in Metals using SAFT. Mat. of. IEEE Intern. Ultras. Symp. Proc., New York, 732-735.
  • [13] Mayer, K. et al. (1990). Three-dimensional Imaging System Based on Fourier Transform Synthetic Aperture Focusing Technique. Ultrasonics, 28, 241-255.
  • [14] Busse, L.J. (1992). Three-Dimensional Imaging Using a Frequency-Domain Synthetic Aperture Focusing Technique. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 39, 174-179.
  • [15] Koenig, M. et al. (1995). Relative Consistency of Equations of State by Laser Driven Shock Waves. Phys. Rev. Letters, 12(74), 45-49.
  • [16] Bolis, C. et al. (2007). Physical Approach of Adhesion Test using Laser Driven Shock Wave. J. Phys. D: Appl. Phys., 10(40), 3155-3163.
  • [17] Boustie, M. et al. (2008). Laser Shock Waves: Fundamentals and Applications. Mat. of 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications, Montreal, Canada, 32-40.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0083-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.