PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Minimization of maximum errors in universal approximation of the unit circle by a polygon

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a universal approximation of the unit circle by a polygon that can be used in signal processing algorithms. Optimal choice of the values of three parameters of this approximation allows one to obtain a high accuracy of approximation. The approximation described in the paper has a universal character and can be used in many signal processing algorithms, such as DFT, that use the mathematical form of the unit circle. One of the applications of the described approximation is the DFT linear interpolation method (LIDFT). Applying the results of the presented paper to improve the LIDFT method allows one to significantly decrease the errors in estimating the amplitudes and frequencies of multifrequency signal components. The paper presents the derived formulas, an analysis of the approximation accuracy and the region of best values for the approximation parameters.
Rocznik
Strony
391--402
Opis fizyczny
Bibliogr. 49 poz., rys., wykr., wzory
Twórcy
autor
  • Wroclaw University of Technology, Chair of Electronic and Photonic Metrology, ul. B. Prusa 53/55, 50-317 Wroclaw, Poland, Jozef.Borkowski@pwr.wroc.pl
Bibliografia
  • [1] Marple, S.L. (1987). Digital Spectral Analysis with Applications, Prentice-Hall.
  • [2] Kay, S.M. (1988). Modern Spectral Estimation: Theory and Application, Englewood Cliffs, Prentice-Hall.
  • [3] Scharf, L.L. (1991). Statistical Signal Processing: Detection, Estimation and Time Series Analysis, Addison-Wesley.
  • [4] Mitra, S.K., Kaiser, J.F. (ed.) (1993). Handbook for Digital Signal Processing, Wiley.
  • [5] Zygarlicki, J., Zygarlicka, M., Mroczka, J., Latawiec, K.J. (2010). A reduced Prony's method in powerquality analysis-parameters selection, IEEE Trans. Power Del., 25(2), 979-986.
  • [6] Renders, H., Schoukens, J., Vilain, G. (1984). High-Accuracy Spectrum Analysis of Sampled Discrete Frequency Signals by Analytical Leakage Compensation, IEEE Trans. Instrum. Meas., 33(4), 287-292.
  • [7] Zakharov, Y.V., Tozer, T.C. (1999). Frequency estimator with dichotomous search of periodogram peak, Electronics Letters, 35(19), 1608-1609.
  • [8] Reisenfeld, S., Aboutanios, E. (2003). A New Algorithm for the Estimation of the Frequency of a Complex Exponential in Additive Gaussian Noise, IEEE Communications Letters, 7(11), 549-551.
  • [9] Aboutanios, E., Mulgrew, B. (2005). Iterative Frequency Estimation by Interpolation on Fourier Coefficients, IEEE Transactions on Signal Processing, 53(4), 1237-1242.
  • [10] He, B., Cabestaing, F., Postaire, J.G., Zhang, R. (2005). Narrow-Band Frequency Analysis for Laser-Based Glass Thickness Measurement, IEEE Transactions on Instrumentation and Measurements, 54(1), 222-227.
  • [11] Zivanovic, M., Carlosena, A. (2001). Nonparametric Spectrum Interpolation Methods: A Comparative Study, IEEE Transactions on Instrumentation and Measurement, 50(5), 1127-1132.
  • [12] Zivanovic, M., Carlosena, A. (2002). Extending the limits of resolution for narrow-band harmonic and modal analysis: a non-parametric approach, Measurement Science and Technology, 13(12), 2082-2089.
  • [13] Porat, B. (1996). A Course in Digital Signal Processing, Wiley.
  • [14] Rabiner, L.R., Schafer, R.W., Rader, C.M. (1969). The chirp-z transform algorithm, IEEE Trans. on Audio and Electroacoustics, 17(2), 86-92.
  • [15] Aiello, M., Cataliotti, A., Nuccio, S. (2005). A Chirp-Z Transform-Based Synchronizer for Power System Measurements, IEEE Transactions on Instrumentation and Measurement, 54(3), 1025-1032.
  • [16] Sarkar, I., Fam, A.T. (2006). The interlaced chirp Z transform, Signal Processing, 86, 2221-2232.
  • [17] Duda, K., Borkowski, D., Bień, A. (2009). Computation of the network harmonic impedance with Chirp-Z transform, Metrology and Measurement Systems, 16(2), 299-312.
  • [18] Makur, A., Mitra, S.K. (2001). Warped Discrete-Fourier Transform: Theory and Applications, IEEETransactions on Circuits and Systems - I: Fundamental Theory and Applications, 48(9), 1086-1093.
  • [19] Franz, S.F., Mitra, S.K., Doblinger, G. (2003). Frequency estimation using warped discrete Fourier transform, Signal Processing, 83, 1661-1671.
  • [20] Venkataramanan, R., Prabhu, K.M.M. (2006). Estimation of frequency offset using warped discrete-Fourier transform, Signal Processing, 86, 250-256.
  • [21] Rife, D.C., Vincent, G.A. (1970). Use of the Discrete Fourier Transform in the Measurement of Frequencies and Levels of Tones, Bell System Technical Journal, 49, 197-228.
  • [22] Kamm, G.N. (1978). Computer Fourier-transform techniques for precise spectrum measurements of oscillatory data with application to the de Haas-van Alphen effect, J. of App. Phys., 49(12), 5951-5970.
  • [23] Jain, V.K., Collins, W.L., Davis, D.C. (1979). High-Accuracy Analog Measurements via Interpolated FFT, IEEE Transactions on Instrumentation and Measurements, 28(2), 113-121.
  • [24] Grandke, T. (1983). Interpolation Algorithms for Discrete Fourier Transforms of Weighted Signals, IEEE Transactions on Instrumentation and Measurement, 32, 350-355.
  • [25] Andria, G., Savino, M., Trotta, A. (1989). Windows and Interpolation Algorithms to Improve Electrical Measurement Accuracy, IEEE Transactions on Instrumentation and Measurement, 38(4), 856-863.
  • [26] Offelli, C., Petri, D. (1990). Interpolation Techniques for Real-Time Multifrequency waveform analysis, IEEE Transactions on Instrumentation and Measurement, 39(1), 106-111.
  • [27] Schoukens, J., Pintelon, R., Van Hamme, H. (1992). The Interpolated Fast Fourier Transform: A Comparative Study, IEEE Transactions on Instrumentation and Measurement, 41(2), 226-232.
  • [28] Quinn, B.G. (1994). Estimating Frequency by Interpolation Using Fourier Coefficients, IEEE Transactions on Signal Processing, 42(5), 1264-1268.
  • [29] Quinn, B.G. (1997). Estimating of Frequency, Amplitude, and Phase from the DFT of a Time Series,IEEE Transactions on Signal Processing, 45(3), 814-817.
  • [30] Macleod, M.D. (1998). Fast Nearly ML Estimation of the Parameters of Real or Complex Single Tones or Resolved Multiple Tones, IEEE Transactions on Signal Processing, 46(1), 141-148.
  • [31] Sedlacek, M., Titera, M. (1998). Interpolations in frequency and time domains used in FFT spectrum analysis, Measurement, 23, 185-193.
  • [32] Santamaria, I., Pantaleon, C., Ibanez, J. (2000). A Comparative Study of High-Accuracy Frequency Estimation Methods, Mechanical Systems and Signal Processing, 14(5), 819-834.
  • [33] Borkowski, J. (2000). LIDFT - the DFT linear interpolation method, IEEE Trans. Instrum. Meas., 49(4), 741-745.
  • [34] Borkowski, J., Mroczka, J. (2000). Application of the discrete Fourier transform linear interpolation method in the measurement of volume scattering function at small angle, Optical Eng., 39(6), 1576-1586.
  • [35] Borkowski, J., Mroczka, J. (2002). Metrological analysis of the LIDFT method, IEEE Transactions on Instrumentation and Measurement, 51(1), 67-71.
  • [36] Agrež, D. (2002). Weighted Multipoint Interpolated DFT to Improve Amplitude Estimation of Multifrequency Signal, IEEE Transactions on Instrumentation and Measurement, 51(2), 287-292.
  • [37] Liguori, C., Paolillo, A. (2007). IFFTC-Based Procedure for Hidden Tone Detection, IEEE Transactions on Instrumentation and Measurements, 56(1), 133-139.
  • [38] Belega, D., Dallet, D. (2008). Frequency estimation via weighted multipoint interpolated DFT, IET Science, Measurement and Technology, 2(1), 1-8.
  • [39] Chen, K.F., Li, Y.F. (2008). Combining the Hanning windowed interpolated FFT in both directions, Computer Physics Communications, 178, 924-928.
  • [40] Li, Y.F., Chen, K.F. (2008). Eliminating the picket fence effect of the fast Fourier transform, Computer Physics Communications, 178, 486-491.
  • [41] Belega, D., Dallet, D. (2009). Multifrequency signal analysis by Interpolated DFT method with maximum sidelobe decay windows, Measurement, 42, 420-426.
  • [42] Yang, X.Z., Li, H.Y., Chen, K.F. (2009). Optimally averaging the interpolated fast Fourier transform in both directions, IET Science, Measurement and Technology, 3(2), 137-147.
  • [43] Chen, K.F., Jiang, J.T., Crowsen, S. (2009). Against the long-range spectral leakage of the cosine window family, Computer Physics Communications, 180, 904-911.
  • [44] Chen, K.F., Mei, S.L. (2010). Composite Interpolated Fast Fourier Transform With the Hanning Window, IEEE Transactions on Instrumentation and Measurement, 59(6), 1571-1579.
  • [45] Borkowski, J., Mroczka, J. (2010). LIDFT method with classic data windows and zero padding in multifrequency signal analysis, Measurement, 43, 1595-1602.
  • [46] Duda, K. (2010). DFT Interpolation Algorithm for Kaiser-Bessel and Dolph-Chebyshev Windows, IEEE Transactions on Instrumentation and Measurement, 60(3), 784-790.
  • [47] Harris, F.J. (1978). On the use of windows for harmonic analysis with the Discrete Fourier Transform, Proceedings of the IEEE, 66(1), 51-83.
  • [48] Mroczka, J., Szczuczyński, D. (2009). Inverse problems formulated in terms of first-kind Fredholm integral equations in indirect measurements, Metrology and Measurement Systems, 16 (3), 333-357.
  • [49] Szmajda, M, Górecki, K, Mroczka, J. (2010). Gabor transform, spwvd, gabor-wigner transform and wavelet transform - tools for power quality monitoring, Metrology and Measurement Systems, 17(3), 383-396.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0083-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.