PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

What is the role of the stagnation region in Karman vortex shedding?

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to the problem of the appearance of a stagnation region during Karman vortex shedding. This particular phenomenon has been addressed by G. Birkhoff in his model of vortices generation. Experimental results obtained by various research methods confirm the existence of a stagnation region. The properties of this stagnation region have been described based on experimental findings involving flow visualisation and hot-wire anemometry. Special attention has been paid to the relationship between the existence of a slit in the bluff body and the size of the stagnation region. The slit takes over the role of the stagnation region as an information channel for generating vortices.
Rocznik
Strony
361--370
Opis fizyczny
Bibliogr. 26 poz., fot., rys., wykr.
Twórcy
  • Institute of Electronic Systems, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland, g.pankanin@ise.pw.edu.pl
Bibliografia
  • [1] Pankanin, G.L. (2005). The Vortex Flowmeter: Various Methods of Investigating Phenomena. Measurement Science and Technology, (3), R1-R16 (Review article).
  • [2] Cousins, T., Foster, S.A., Johnson, P.A. (1973). A linear and accurate flowmeter using vortex shedding. Proc. Power Fluid for Process Control Symposium, Inst. Measurement and Control, Guildford, UK, 45-46.
  • [3] Miller, R.W., De Carlo, J.P., Cullen, J.T. (1977). A vortex flowmeter - calibration results and application experience. Proc. Flow-Con, Brighton, UK.
  • [4] Lomas, D.J. (July/August 1975). Vortex flowmetering challenges the accepted techniques. Control & Instrumentation.
  • [5] Turner, J.T., Popiel, C.O., Robinson, D.I. (1993). Evolution of an improved vortex generator. Flow Measurement and Instrumentation, 4, 249-259.
  • [6] Igarashi, T. (13-17 August, 2000). Performance of new type vortex shedder for vortex flowmeter. Proc. of Sixth Triennal International Symposium on Fluid Control, Measurement and Visualisation FLUCOME 2000, Sherbrooke (Qc) Canada, 028.
  • [7] Hans, V., Windorfer, H. (2003). Comparison of pressure and ultrasound measurements in vortex flowmeters, Measurement, 33, 121-133.
  • [8] Menz, B. (1997). Vortex flowmeter with enhanced accuracy and reliability by means of sensor fusion and self-validation, Measurement, 22, 123-128.
  • [9] Takahashi, S., Itoh, I. (1993). Intelligent vortex flowmeter. Proc. of International Conference of Flow Measurement FLOMEKO 1993, Seoul, Korea, 107-113.
  • [10] Hans, V., Poppen, G. (1996). Measuring Vortex Frequencies using Undersampled Ultrasound Signals. Proc. of International Conference of Flow Measurement FLOMEKO'96, Bejing, China, 724-728.
  • [11] Clarke, D.W. (2002). Designing phase-locked loops for instrumentation applications. Measurement, 32, 205-227.
  • [12] Clarke, D.W., Ghaoud, T. (2003). A dual phase-locked loop for vortex flow metering. Flow Measurement and Instrumentation, 14, 1-11.
  • [13] Huang, N.E., Shen, Z., Long, S.R., et al. (1998). The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proc. of the Royal Society of London, 454, 903-995.
  • [14] Sun, Z-Q., Zhou, J-M., Zhou, P. (2006). Application of Hilbert-Huang Transform to Denoising in Vortex Flowmeter. J. Cent. South Univ. Technol., 13(5), 501-505.
  • [15] Birkhoff, G. (1953). Formation vortex street. Journal of Applied Physics, 24(1), 98-103.
  • [16] Birkhoff, G. (1957). Zarantonello E.H. Jets Wakes and Cavities, Academic Press Inc., New York.
  • [17] Funakawa, M. (1969). The Vibration of a Cylinder Caused by Wake Force in a Flow. The Japan Society of Mechanical Engineers, 12(53), 1003-1010.
  • [18] Pankanin, G.L. (1994). Sensitivity of Vortex Meter Characteristics on Bluff Body Design. Proc. of Fourth Triennal International Symposium on Fluid Control, Measurement and Visualisation FLUCOME’94, Toulouse, France, 2, 893-898.
  • [19] Cousins, T., Zanker, K. (1975). The performance and design of vortex meters. Proc. Int Conf. On Flow Meters in the Mid 1970’s, NEL, East Kilbride, Scotland.
  • [20] Pankanin, G.L., Berliński, J., Chmielewski, R. (2005). Analytical modelling of Karman vortex street. Metrology and Measurement Systems, 12(4), 411-425.
  • [21] Pankanin, G.L., Berliński, J., Chmielewski, R. (2006). Simulation of Karman vortex street development using new model. Metrology and Measurement Systems, 13(1), 35-47.
  • [22] Pankanin, G.L. (1-3 May, 2007). Experimental and Theoretical Investigations Concerning the Influence of Stagnation Region on Karman Vortex Shedding. Proc. IMTC 2007, IEEE Instrumentation and Measurement Technology Conference, Warsaw, Poland, CD-ROM proceedings.
  • [23] Honda, S., Yamasaki, H. (1985). Vortex shedding in a three-dimensional flow through a circular pipe. Proc. IMEKO X Congress, Prague, Czech Republic, 139-149.
  • [24] Igarashi, T. (2-6 September, 1985). Fluid flow around a bluff body used for a Karman vortex flowmeter. Proc. of International Symposium on Fluid Control and Measurement FLUCOME TOKYO’85, Tokyo, Japan, 1017-1022.
  • [25] Pankanin, G., Kulińczak, A., Berliński, J. (2007). Investigations of Karman Vortex Street Using Flow Visualization and Image Processing. Sensors and Actuators A: Physical, 138, 366-375.
  • [26] Pankanin, G.L., Kulińczak, A. (6-11 Sept., 2009). Determination of Vortex Convection Velocity with Application of Flow Visualization and Image Processing. Proc. of XIX IMEKO World Congress ‘Fundamental and Applied Metrology’, Lisbon, Portugal.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0083-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.