PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and performance of the converging-diverging vortex flowmeter

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The converging-diverging structure is introduced to extend the lower limit of measurement of vortex flowmeters. As a compact device, the converging-diverging vortex flowmeter is proposed and designed, and its performance is studied experimentally. It is found that, first of all, an up to 51% extension of the lower measurement limit can be realized through the converging-diverging structure, compared with conventional vortex flowmeters; second, the converging-diverging vortex flowmeter with a trapezoidal bluff body has a larger Strouhal number and smaller pressure loss. The results suggest that the converging-diverging vortex flowmeter provides an alternative device especially suitable for the measurement of low-velocity fluids.
Rocznik
Strony
129--136
Opis fizyczny
Bibliogr. 13 poz., rys., wykr.
Twórcy
autor
  • School of Energy Science and Engineering, Central South University, Changsha 410083, China, zqsun@mail.csu.edu.cn
Bibliografia
  • [1] Shakouchi, T., Tian, D., Ida, T., Nakamura, T. (2001). Measurement of flow rates of gas-liquid two-phase flow by Karman vortex. Proceedings of the 3rd International Symposium on Measurement Techniques for Multiphase Flows. Fukui. Japan, 83-89.
  • [2] Sun, Z., Zhang H. (2010). Measurement of the flow rate and volume void fraction of gas-liquid bubble flow using a vortex flow meter. Chemical Engineering Communications, 197(2), 145-157.
  • [3] Barton, J., Saoudi, M. (1986). A fiber optic vortex flowmeter. Journal of Physics E: Scientific Instruments, 19(1), 64-66.
  • [4] Hans, V., Windorfer, H. (2003). Comparison of pressure and ultrasound measurements in vortex flow meters. Measurement, 33(2), 121-133.
  • [5] Zhang, T., Sun, H., Peng, W. (2004). Wavelet denoising applied to vortex flowmeters. Flow Measurement and Instrumentation, 15(5-6), 325-329.
  • [6] Sun, Z., Zhou, J., Zhou, P.(2006). Application of Hilbert-Huang transform to denoising in vortex flowmeter. Journal of Central South University of Technology, 13(5), 501-505.
  • [7] Xu, K., Zhu, Z., Zhou, Y., Wang, X., Liu, S., Huang, Y., Chen Z. (2009). Applied digital signal processing systems for vortex flowmeter with digital signal processing. Review of Scientific instruments, 80(2), 025104.
  • [8] Fu, X., Yang, H. (2001). Study on hydrodynamic vibration in dual bluff body vortex flowmeter. Chinese Journal of Chemical Engineering, 9(2), 123-128.
  • [9] Peng, J., Fu, X., Chen, Y.(2004). Flow measurement by a new type vortex flowmeter of dual triangulate bluff body. Sensors and Actuators. A: Physical, 115(1), 53-59.
  • [10] Mo, N. (2000). Engineering Fluid Mechanics. Huazhong University of Science and Technology Press. Wuhan. (in Chinese).
  • [11] Sun, Z., Zhang, H., Zhou, J. (2007). Investigation of the pressure probe properties as the sensor in the vortex flowmeter. Sensors and Actuators. A: Physical, 136(2), 646-655.
  • [12] Sun, Z., Zhang, H., Zhou, J. (2008). Evaluation of uncertainty in a vortex flowmeter measurement. Measurement, 41(4), 349-356.
  • [13] Sun, Z., Zhang, H., Huang, Y., Han X. (2006). Impact analysis of vortex flowmeter measured with ductwall differential pressure method. Journal of Zhejiang University. Engineering Science, 40(12), 2103-2106 (in Chinese).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0075-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.