PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Dynamically programmable analog arrays in acoustic frequency range signal processing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Field programmable analog arrays (FPAA), thanks to their flexibility and reconfigurability, give the designers quite new possibilities in analog circuit design. The number of both academic projects on FPAA and applications of commercially available programmable devices is still growing. This paper explores the properties and parameters of two most popular FPAA circuits: the AnadigmVortex AN221E04 and AnadigmApex AN231E04 from the Anadigm company. The research conducted by the authors led to the discovery of some undocumented features of these devices. Several applications for audio processing were built and tested. The results show that these circuits can be used in medium-demanding audio applications. Thanks to dynamic reconfigurability, they also allow to build an universal analog audio signal processor. These circuits can also act as a versatile platform for rapid prototyping and educational purposes.
Rocznik
Strony
77--89
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
autor
  • Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Institute of Electronics, Akademicka 16, 44-100 Gliwice, piotr.falkowski@polsl.pl
Bibliografia
  • [1] Hall, T.S. (2004). Field Programmable Analog Arrays: A Floating-Gate Approach. Atlanta: Georgia Institute of Technology. (Ph.D. thesis).
  • [2] Basu, A. et al. (2010). A Floating-Gate-Based Field-Programmable Analog Array. IEEE Journal of Solid-State Circuits, 45(9), 1781-1794.
  • [3] Twigg, C.M., Hasler, P. (2006). A Large-Scale Reconfigurable Analog Signal Processor (RASP) IC. In Proceedings of IEEE Custom Integrated Circuits Conference. San Jose. USA, 5-8.
  • [4] Pankiewicz, B. Wójcikowski, M., Szczepanski, S., Sun, Y. (2002). A Field Programmable Analog Array for CMOS Continuous Time OTA-C Filter Applications. IEEE Journal of Solid-State Circuits, 37(2), 125-136.
  • [5] Henrici, F., et al. (2009). A Field Programmable Analog Array using Floating Gates for High Resolution Tuning, In Proceedings of IEEE International Symposium on Circuits and Systems. Taipei. Taiwan, 265-268.
  • [6] Becker, J., Henrici, F., Trendelenburg, S., Manoli, Y. (2008). A Field-Programmable Analog Array of 55 Digitally Tunable OTAs in a Hexagonal Lattice. IEEE Journal of Solid-State Circuit, 43(12), 2759-2768.
  • [7] http://www.cypress.com/?id=1353 (November 2010).
  • [8] http://www.anadigm.com/dpasp.asp (November 2010).
  • [9] http://www.latticesemi.com/products/maturedevices/isppac/index.cf (November 2010).
  • [10] http://www.latticesemi.com/dynamic/view_document.cfm?document_id=30282 (November 2010).
  • [11] Zetex Semiconductors Ltd. (1999). Totally reconfigurable analog circuit: TRAC.
  • [12] Bratt, A. (1998). Motorola field programmable analogue arrays, present hardware and future trends. In Proceedings of IEE Half-day Colloquium on Evolvable Hardware Systems. London. UK, 1/1-1/5.
  • [13] Baccigalupi, A., Liccardo, A. (2007). Field Programmable Analog Arrays for Conditioning Ultrasonic Sensors. IEEE Sensors Journal, 7(8), 1176-1182.
  • [14] Morales, D.P., et al., (2008). Enhancing ADC resolution through Field Programmable Analog Array dynamic reconfiguration. In Proceedings of International Conference on Field Programmable Logic and Applications (FPL). Heidelberg. Germany, 635-638.
  • [15] Deese, A., Jimenez, J.C., Nwankpa, C.O. (2009). Utilization of field programmable analog arrays (FPAA) to emulate power system dynamics. In Proceedings of IEEE International Symposium on Circuits and Systems. Taipei. Taiwan, 1713-1716.
  • [16] Lita, I., Visan, D.A., Cioc, I.B. (2009). FPAA based PID controller with applications in the nuclear domain. In Proceedings of 32nd International Spring Seminar on Electronics Technology (ISSE). Brno. Czech Republic, 1-4.
  • [17] Domenech-Asensi, G. et al. (2006). Synthesis on FPAA of a Smart Sthetoscope Analog Subsystem. In Proceedings of International Conference on Field Programmable Logic and Applications (FPL). Madrid. Spain, 1-5.
  • [18] Malcher, A., Pietraszek, S., Przybyła, T. (2010). Hybrid QRS Detection Circuit Based on Dynamic Reconfigurable Field Programmable Analog Array. In Proceedings of 10th International IFAC Workshop on Programmable Devices and Embedded Systems. Pszczyna-Gliwice. Poland.
  • [19] AN231E04 Datasheet Rev.1.1 - Dynamically Reconfigurable dpASP, Datasheet for Anadigm. (2008). http://www.anadigm.com/_doc/DS231000-U001.pdf.
  • [20] AN221E04 Datasheet - Dynamically Reconfigurable FPAA With Enhanced I/O, Datasheet for Anadigm. (2003). http://www.anadigm.com/_doc/DS030100-U006.pdf.
  • [21] Malcher, A., Kidoń, Z. (2009). Some properties of FPAA-based Analog Signal Processing. In Proceedings of 9th International IFAC Workshop on Programmable Devices and Embedded Systems. Pszczyna-Gliwice. Poland.
  • [22] Zölzer, U. (2002) DAFX: Digital Audio Effects. New York: John Wiley & Sons.
  • [23] ispPAC10 - In-System Programmable Analog Circuit, Datasheet for Lattice Semiconductor. (2000). http://www.latticesemi.com/lit/docs/datasheets/pac/pac10.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0075-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.