Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A research study aimed at developing a novel indoor positioning system is presented. The realized system prototype uses sensor fusion techniques to combine information from two sources: an in-house developed local Ultra-Wideband (UWB) radio-based ranging system and an inertial navigation system (INS). The UWB system measures the distance between two transceivers by recording the round-trip-time (RTT) of UWB radio pulses. Its principle of operation is briefly described, together with the main design features. Furthermore, the main characteristics of the INS and of the Extended Kalman Filter information fusion approach are presented. Finally, selected static and dynamic test scenario experimental results are provided. In particular, the advantages of the proposed information fusion approach are further investigated by means of a high dynamic test scenario.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
447--460
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
autor
autor
- Royal Institute of Technology, Signal Processing Lab, ACCESS Linnaeus Centre, Osquldas väg 10, 10044 Stockholm, Sweden, alessio.deangelis@ee.kth.se
Bibliografia
- [1] H. Liu, H. Darabi, P. Banerjee, and J. Liu: “Survey of wireless indoor positioning techniques and systems”. IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 37, Nov. 2007, pp. 1067-1080.
- [2] IEEE Std 802.11-2007, Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Part 11, 2007.
- [3] ZigBee Alliance. 2009, http://www.zigbee.org/
- [4] S. Gezici et al.: “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks”. IEEE Signal Processing Magazine, vol. 22, Jul. 2005, pp. 70-84.
- [5] R. Fontana: “Recent system applications of short-pulse ultrawideband (UWB) technology.” IEEE Trans. Microw. Theory Tech., vol. 52, Sep. 2004, pp. 2087-2104.
- [6] Federal Communications Commission (FCC). Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems, 2002.
- [7] L. Stoica, A. Rabbachin, H.O. Repo, T.S. Tiuraniemi, I. Oppermann: “An ultrawideband system architecture for tag based wireless sensor networks”. IEEE Trans. Vehic. Techn., vol. 54, Sep. 2005, pp. 1632-1645.
- [8] M.R. Mahfouz, C. Zhang, B.C. Merkl, M.J. Kuhn, A.E. Fathy: “Investigation of high-accuracy indoor 3-D positioning using UWB technology.” IEEE Trans. Microw. Theory Tech., vol. 56, Jun. 2008, pp. 1316-1330.
- [9] Multispectral Solutions, Zebra Enterprise Solutions. Jun. 2010, Sapphire DART (RTLS) product data sheet. http://zes.zebra.com/pdf/products-datasheets/ds_sapp_dart.pdf
- [10]Time Domain Corporation. Jun. 2010, PulsON P220 reference Design. http://www.timedomain.com/products/P220aRD.pdf
- [11]The Ubisense Precise Real-time Location System. Ubisense Ltd. Jun.2010, http://www.ubisense.net
- [12] J. Gonzalez et al.: “Combination of UWB and GPS for indoor-outdoor vehicle localization”. Proc. IEEE International Symposium on Intelligent Signal Processing, WISP, Alcala de Henares, Spain, 3-5 Oct. 2007.
- [13]K.M. Tan, C.L. Law: “GPS and UWB integration for indoor positioning”. Proc. 6th International Conference on Information, Communications & Signal Processing, Singapore, 10-13 Dec. 2007.
- [14]D.B. Jourdan, J. Deyst, M.Z. Win, N. Roy: “Monte Carlo localization in dense multipath environments using UWB ranging”. Proc. IEEE International Conference on Ultra-Wideband ICUWB, Zurich, Switzerland, 5-8 Sept. 2005, pp. 314-319.
- [15]A. De Angelis, J.O. Nilsson, I. Skog, P. Händel, P. Carbone: “Indoor positioning by ultra wideband radio aided inertial navigation”. XIX IMEKO World Congress, Lisbon, Portugal, Sept. 2009, pp. 574-579.
- [16]De Angelis, A. Moschitta, P. Händel, P. Carbone: “Experimental radio indoor positioning systems based on round-trip-time measurement”. Advances in Measurement Systems, chapter 8, ed. Milind Kr Sharma, INTECH, 2010.
- [17] J.O. Nilsson, A. De Angelis, I. Skog, P. Carbone: “Signal processing issues in indoor positioning by ultra wide band radio aided inertial navigation”. European Signal Processing Conference Proceedings, EUSIPCO, Glasgow, Scotland, August 2009, pp. 2161-2165.
- [18]A. De Angelis, M. Dionigi, A. Moschitta, P. Carbone: “A low-cost ultra-wideband indoor ranging system”. IEEE Trans. Instrum. Meas., vol. 58, no. 12, Dec. 2009, pp. 3935-3942.
- [19]A. De Angelis, M. Dionigi, A. Moschitta, R. Giglietti, P. Carbone: “Characterization and modeling of an experimental UWB pulse-based distance measurement system”. IEEE Trans. Instrum. Meas., vol. 58, no. 5, May 2009, pp. 14791-1486.
- [20]M. Dionigi, R. Giglietti, P. Carbone A. De Angelis: “Experimental low-cost short pulse generators”. IEEE Instrum. and Meas.Techn. Conference Proceedings, IMTC, Victoria, BC, Canada, 2008, pp. 259-264.
- [21]K.R. Britting: Inertial Navigation Systems Analysis. Wiley Interscience, 1971.
- [22]C. Jekeli: Inertial Navigation Systems with Geodetic Applications. de Gruyter, 2001.
- [23] J. Farrell, M. Barth: The Global Positioning System & Inertial Navigation. McGraw-Hill, 1999.
- [24]A. Chatfield: Fundamentals of High Accuracy Inertial Navigation. American Institute of Aeronautics and Astronautics, 1997.
- [25]M.S. Grewal, L.R. Weill, A.P. Andrews: Global Positioning Systems, Inertial Navigation and Integration. Wiley, 2007.
- [26]L. Yan, B. Liu, D. Zhou: “Asynchronous multirate multisensor information fusion algorithm”. IEEE Trans. Aero. Elec. Sys., vol. 43, July 2007, pp. 1135-1146.
- [27] I. Skog, P. Händel: “In-car positioning and navigation technologies - a survey”. IEEE Trans. Intell. Tran. Syst., vol. 10, no. 1, Mar. 2009, pp. 4-21.
- [28] J.O. Nilsson, P. Händel: “Time synchronization and temporal ordering of asynchronous measurements form a multi-sensor navigation system”. IEEE/ION Position Location and Navigation System (PLANS), Palm Springs, USA, May 2010.
- [29]T. Kailath, A. Sayed, B. Hassibi: Linear Estimation. Prentice-Hall, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0069-0012