PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A reconstruction method of generalized sampling based on generalized inverse

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper considers the problem of reconstructing a class of generalized sampled signals of which a special case occurs in, e.g., a generalized sampling system due to non-ideal analysis basis functions. To this end, we propose an improved reconstruction system and a reconstruction algorithm based on generalized inverse, which can be viewed as a reconstruction method that reduces reconstruction error as well. The key idea is to add an additional channel into a generalized sampling system and apply the generalized inverse theory to the reconstruction algorithm. Finally, the approach is applied, respectively, to an oscilloscope, which shows the proposed method yields better performance as compared to the existing technique.
Rocznik
Strony
163--171
Opis fizyczny
Bibliogr. 12 poz., rys., wykr.
Twórcy
autor
autor
autor
autor
  • University of Electronic Science and Technology of China, The College of Automation Engineering, Chengdu, Sichuan, 611731, China, zhaoxuanzhu@uestc.edu.cn
Bibliografia
  • [1] A. Papoulis: “Generalized sampling expansion”. IEEE Trans. Circuits Syst., vol. 24, 1977, pp. 652-654.
  • [2] M. Unser, A. Aldroubi: “A general sampling theory for nonideal acquisition devices”. IEEE Trans. Signal Process., vol. 42, 1994, pp. 2915-2925.
  • [3] S. Chang Eon, L. Mun Bae, R. Kyung Soo: “Nonuniform Sampling of Bandlimited Functions”. IEEE Trans. Informat. Theory, vol. 54, no. 7, 2008, pp. 3814-3819.
  • [4] M. Unser: “Splines: A perfect fit for signal and image processing”. IEEE Signal Process. Mag., 1999, pp. 22-38.
  • [5] Y.C. Eldar, M. Unser: “Non-ideal sampling and interpolation from noisy observations in shift-invariant spaces”. IEEE Trans. Signal Process., vol. 54, no. 7, 2006, pp. 2636-2651.
  • [6] S. Remani, M. Unser: “Nonideal Sampling and Regularization Theory”. IEEE Trans. Signal Process., vol. 56, no. 3, 2008, pp. 1055-1070.
  • [7] Y.C. Eldar: “Sampling and reconstruction in arbitrary spaces and oblique dual frame vectors”. J. Fourier Anal. Appl., vol. 1, no. 9, Jan. 2003, pp. 77-96.
  • [8] P.P. Vaidyanathan: “Generalizations of the sampling theorem: Seven decades after Nyquist”. IEEE Trans. Circuit Syst. I. Fundam. Theory Appl., vol. 48, no. 9, 2001, pp. 1094-1109.
  • [9] M. Lu Yue, N. Do Minh: “A Theory for Sampling Signals From a Union of Subspaces”. IEEE Trans. Signal Process., vol. 56, no. 6, 2008, pp. 2334-2345.
  • [10] I. Djokovic, P.P. Vaidyanathan: “Generalized sampling theorems in multiresolution subspaces”. IEEE Trans. Signal Process., vol. 45, Mar. 1997, pp. 583-599.
  • [11] Z. Zhaoxuan, W. Houjun, W. Zhigang: “Computation of reconstruction function for samples in shiftinvariant spaces”. Mertol. Meas. Syst., vol. XVI, no. 4, 2009, pp. 535-544.
  • [12] Y.C. Eldar: “Sampling without input constraints: Consistent reconstruction in arbitrary spaces”. Sampling, Wavelets and Tomography, A.I. Zayed, J.J. Benedetto, Eds. Boston, MA: Birkhauser, 2004, pp. 3360.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0065-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.